PROJECT_REPORT_ANA_LUIZA_
CASTRO

by ANA LUIZA SILVA DE CASTRO

Submission date: 19-Sep-2022 11:14AM (UTC+0100)
Submission ID: 186091424

File name:
142415_ANA_LUIZA_SILVA_DE_CASTRO_PROJECT_REPORT_ANA_LUIZA_CASTRO_1552782_471961339.pdf
(3.78M)

Word count: 20127
Character count: 118539

Audio exchange application to tackle loneliness of older adults
Ana Luiza Silva de Castro
13807717

MSc Computer Science project report
Department of Computer Science and Information Systems,
Birkbeck College, University of London
2022

This report is substantially the result of my own work, expressed in my own words, except
where explicitly indicated in the text. I have read and understood the sections on plagiarism in
the Programme Handbook and the College website. I give my permission for it to be submitted
to the JISC Plagiarism Detection Service.

The report may be freely copied and distributed, provided the source is explicitly
acknowledged.

SUMMARY

Table of Contents

SUMMARY ettt te e se s ss s mnns s s nnnss s nnn s ssnnssssnnssssnnsssssnsssssnssssassssranes
TABLE OF FIGUREScoieesivisssssimsssssmsssssnnssssnsnmssnsssnsnnnsnsnnssssnnssssnnsssssnsssssnssssasnsssanes
TABLE OF TABLES......coieeiivisisisimsssssmsssssnmisssnsnsssnnssnsnnnsnsnnssssnnssssnnsssssnsssssnssssasnssnanes
DEDICATION u.ceveerenreeennsessnnsenssnressssiensssiesssssenssssinssssinsssssmsssssmssssssasssssasssssanssssanns
ACKNOWLEDGMENTS.......oeerurirussissssssssssssssssssssasssssassssssnsssssnnssssnnanssnnsrssnnssssnnssns
1 Y Y o
2 INTRODUCTION......oviviiirimssssimssssinmisssnnnmssnnssnsnnnsnsnnssssnnssssnnsssssnsssssnssssasssssanes
2.1 000 3 3 PP
2.2 MOtIVAtION.. o e s e s s s e s s e e s
3 SPECIFICATION.....eeivieeiisimssisimsssssnmisssnnnsssnnnsnsnnnsnsnnssssnnssssnnsssssnsssssnnsssasnsnnanes
3.1 Non-functional REQUIrEMENTS ... iuiiiin i esseie s irenns s s e seans e sessnssans s s ssssanas e s svasne
3.2 =TT+ T = PP
3.3 USEE STOMIES caiieece e et e et e e e se s s e ae et s et s s ses s et e ams as es 400 ae saman s s senasn
34 FUuNctional REQUITEIMENTS ...ttt e et e st e e s e e e st e a1 s e e s e
B 1 L TN
4.1 DesigN MEthOUOIOZYcce et ettt st e e s e e e st e £ s nm s e nm s

4.2 SOFtWAre arChitECEUIE ... et cer e e e e ter s e e seees e mteam s aas e ee e amman s aan sanen

4.2.1 Overview..

4.2.2 Flutter Software Archrteoture

4.2.3 Database design...

4.2.4 Application’s package structure
4.2.5 Design patterns applred
B.2.6 USE CASE QIAEIAIM 1 ittiiet ettt ettt et e sas e et se e s et et 4 esetamse e et en e am s 0t 20 0020 2 es 2 e84 104 104 10 s 0 200 20 0t 2

4.3 User INterface design . e i s essais s s ns s s s aaas e st n o sns s sasas e an s

5 IMPLEMENTATIONeeeeereeiieesieesseessssns s mesm s s s enss s s s mms s s snss s s an s s mmsssssnanns

5.1 About the technologies, tools and languages used......... i .
5101 FIUEERE et oeeieee oottt ettt ettt e 82586 2828 £ 81 o8 58 42842 o812 05t e 2
5012 DAL 1ottt ettt et et e £ 8t 2825 42814 455 S8 2582814 18 58 42842 o1 001t e et 2
T e o =Y o= = USSP USSP SRPERP

5.2 Description of the final product...
5.2.1 Software development methodology .
5.2.2 Sprint 1: Set up the Flutter project and burld a srmple recorder and player
523 Sprint 2: Set up Firebase and build audio upload to database functionality....
5.2.4 Sprint 3: Create a landing page and implement the user’s login and sign-up...

5.2.5 Sprint 4: Implement user profile information management and save user data to F|rebase

5.2.6 Sprint 5: Implement authentication persistence...

5.2.7 Sprint 6: Implement select recipients from the user’s ceII phone contacts ..
5.2.8 Sprint 7: Display chat conversations and send text, emoji and grfmessages
5.2.9 Sprint 8: Implement reply to messages, “online/offline”, and “is seen” features............cc.c........

6

7
8
9

5.2.10 Sprint 9: Group creation, display group conversations and send messages to a group.......... 58
5211 Sprint 10: Implement library and player Ul.. .60
5.2.12 Sprint 11: Implement listening to playlist, seekmg a posmon in the audlo sklppmg audms
repeating and shuffling the playlist... U SSURU - V.
5.2.13 Sprint 12: Implement Ilstenmgto a playhst mth a Iocked screen . reeeennnen B2
5.2.14 Sprint 13: Implement fetching audios from Firebase and markmg audm as favonte63
5.2.15 Sprint 14: Improve audio recorder, record preview, the addition of metadata and sendmg it
to other users.. ettt e e et e et ettt et ettt em et amnt e ee e enneen e ee e e aanees DD
5.2.16 Summary c.-fthe extemal Ilbranes used S SUPSPRRTNRSSS - Y

TESTING AND EVALUATIONccoceriesicemsssssssmsssmsssssssmssssssns s s s sssssssssasnsssss s ss s ssnnsns 69

6.1 Testing... PSP - . |
6.1.1 Types of tests avaﬂable in the Flutter framework F PSSO UP OV SOPYUUOPPPPPPPPTPRPRPRPRPOPNY 1 |
6.1.2 Summary of external libraries used for testing .. USSR | | |
6.1.3 Theapproach adopted to test the application developed J OO UTOUUO OO UPRRROPRROTPRRRPYY L ||
6.1.4 Testresults... F USSR S PSRRI § |
6.1.5 Automated tests mplementatlon hlghllghts JE USSP OUP TSP SUPRUPPPPPPPTPPORPRPPPRRPTRY i I

6.2 Evaluation ..
6.2.1 Critical Evaluatlon
6.2.2 Possible further developments and |mprovements

CONCLUSIONS ...oveeeiceiisssssessmssrssssssssssssrns s s s s ss s sm s sn s as s s s s s s s s s sa s amams s s s e saraan 78
L o] L o 79
APPENDIX ... e e eca e e sm s e e e eab s bn s s mn s s s nsssmsrneenennerrann 81

9.1 Requirements lists .. O PROPRRORIIE
9.1.1 Non-functional requnrements fuII Ilst BSOS SSTNPRSSER . 4 |
9.1.2 Functional requirements fUll list.o i e e e e s e s s B

9.2 USEr ManUal ... icuiinisnsi s snan sisssss s snsssnssssisas s sas s ns s s ssnsaasssnss s snans sasmnsn s s anasss S0
9.3 QL= - T PRSP TPRPUPRTRI -
9.4 User acceptance tests .. ssssnssssiss s s s sss s sssssssassasssssssssns snsnans snssnses 100

9.5 Evidence of automated tests’ results.......cccccciccicicnisninic s se e sissseisse s sse s sns s snssasnas anes 105

TABLE OF FIGURES

Figure 1 — Software Architecture OVErVIEWcoooiiiiiiieiie e s e e e eemennes 19
Figure 2 — Flutter Software ArchiteCture.ccooo o ieciieecie e e e e e e eemenee s 20
Figure 3 — Database diagram.21
Figure 4 — Application’s package 9tructure .25

Figure 5 — Example of an app’s feature archltecture usmg the MVC demgn pattern assoclated
with the provider/observer pattern. The descriptions of functions of the view, controller, and

model found in (Buschmann et al, 1996) Were USEd.......ueeereeeveeeeeieeeensee e e esese e e ersnsnnneeeess 27
Figure 6 — Use case diagram. e e e e et en e e ee s e e e emene e enne s 2O
Figure 7 — Example of typography and font SIZE. oo e e e 29
Figure 8- Error message example.... 30
Figure 9 — Technical error message example. USROS) |
Figure 10 — Maslow's hierarchy of needs.oooi e e e s eee e 2
Figure 11 — Hierarchy of USers’ needs.ooueierieit ettt e e s ene e D2
Figure 12 — Example of Sabid’s user interface. ... ieier e e e eeene . 33
Figure 13 — Implementation Sprints T Y
Figure 14 - Different application states recordmg or playmg recorded audlo in ‘;prmt l .38
Figure 15 - Setting up the Android emulator to receive the headset microphone input. . .39

Figure 16 — Code snippet of the class responsible for storing files in the FirebaseStorage. .40
Figure 17 — Code snippet from “build.gradle” file in the Android app directory, adjusted for
compatibility with the Firebase project... BT S |
Figure 18 — Code snippet from the landmg page lt qhowq an example ofthe use ofthe
animation value that varies with time to control the visibility of elements, rev,ultmg in an

animated visual effect.)
Figure 19 — Code qnlppet of the methodq of the AuthRepoqltory claqq to log in and sign up
users using the FirebaseAuth. e 43

Figure 20 — Code snippet of the plcklmageFromGallery method developed uqlng the
image_picker package. This method will return null if the user does not pick any file from the

gallery and returns to the app............. ...45
Figure 21 — Code snippet of the method developed to save users’ data to F1reba°,e Wthh qttq
under the AuthRepository class. . .46

Figure 22 — Standard profile plcture deqlgned wrth Flgma (Flgma) A standard proflle plcture
should be attributed if the user does not have a profile picture yet and has not selected any

from the cellphone’s gallery. .. . oy
Figure 23 — Code snippet of the method in the AuthRepoqltory claqq to get the current user’s
data.. .48
Flgure 24 Code ‘;mppet of the prov1der of the current user’s data .48
Figure 25 — Code snippet of the 1mplementat10r1 of the authentlcatlorl perslstence in the app’s
root.49
Flgure 26 Code anlppet of the method that returns the users who'ie emall is the in the eell
phone’s contact and registered in the app. [RUPPRRP. |
Figure 27 — Code snippet of the method to fetch the stream of me‘;‘;ageq of a chat
conversation. This method sits under the ChatRepository class..53

Figure 28 — Code snippet of the Me‘;‘;ageReply class and mewageReplyProwder that were
used to control whether the user is replying to a chat message. The comments explain the
details of the implementation logic.............. et e s e e e e nenne e O
Figure 29 — Code snippet of the “onllnefofﬂlne functlonalhty et e s sen e an e OO

Figure 30 — Code snippet of the setUserState method that sits under the AuthRepoqitory class.
s .57
Frgure 31 - Code anppet of the verrfrcatlon toset a meq‘;age as seen when a user vrqualrzeq
it. This snippet can be found on the ChatList Ul component. . -
Figure 32 — Code snippet of the GroupRepository class, reqponqrble for 1nteract1ng wrth the
database to store new group information.59
Figure 33 — Example of the story covers avallablc in the F10] o SRS .61
Figure 34 — Code snippet of the AudroRepoqrtory class that managcs thc interaction w1th thc
audio database.. et ertn e e e emnen et eae s mnes e e emnes e eas s mrnan e en emnnnn e ee emnsnanne - OFF
Figure 35 — AudloMetaclata claqq ...66
Figure 36 — Code snippet of the methocl to ‘;top the recorder from the RecorderController
class. An artificial delay was added to ensure the last second of the voice was capturecl before
stopping the recorder................... e .07
Figure 37 — Code anppct of one unit test 1mplemented for thc AudroMctadata claqq ...71
Figure 38 — Code snippet of one component test implemented for the AuthRepoqrtory cla%s.
Figure 39 — FirSt PAZE. ... c.ocve e an e ceee e e e e o e o smme e e mae s ses e e em s e e memns s OO
Figure 40 — ConteXtualiZation.cccccorvieeeee e e o e s se e cs s s e e e e e emne s OO
Figure 41 — Set up.. USRS O USRS USUSRSSSUSTSUSSRUSNSRRSOO . |
Figure 42 — Chooqlng an opt10n87
Figure 43 — LiStening t0 @ SLOTY . ceeoveerteeetiee e e eeee e eeeee e eseee e e smmesee e eress s ees e ens eeae e e eneanee s OO
Figure 44 — Story Player (1/2). oottt e et st e et s as s s s ne e OO
Figure 45 — Story Player (2/2). oo ettt e et e e e s et s as s e s ne e O
Figure 46 — Recording a STOTY......c.occiciiiioie e e e e s s se e e s e ems e e emne s OO
Figure 47 — About the StOry. ... e 90
Figure 48 — Sharing the Story. ... e 90
Figure 49 — Navigate the apP. .o ooeeo e e et se e sme e e e enms e e s emse e e eneennee D |
Figure 50 — CRat.......oooo e et eeee e eee e e e e e e smmeeee s e ena eee e crmnmsenen e enmennes D |
Figure 5T — Group Chat. ..ottt e et st et s as s s s ene e DL
Figure 52 — User profrle et et ea et et e et eae et s e eae s eatanan s e snn ene e DL
Figure 53 — Authentrcatron perqrqtence et er e ean et s e e e e enn e e en e emencenen e en e e s OO
Figure 54 — End page. . 93
Figure 55 — lnqplratlon e e e e e ee e O
Figure 56 — Snippet of thc AuthController claqq tests reqults teeeeemneeeeseeesae e e emnescensnsensanes 103
Figure 57 — Snippet of the AuthRepository class tests re%ult«; rerereeennrnneereeneansenne e cenesenennes 103
Figure 58 — Snippet of the ErrorScreen class tests resultscoocoeeveeviviiveeice e e ceveniese s 105
Figure 59 — Snippet of the LoaderScreen class tests resultscccccoevmviievececcceeeceeieennn. 106
Figure 60 — Snippet of the WelcomeScreen class tests results106
Figure 61 — Snippet of the AudioMetadata class tests results106
Figure 62 — Snippet of the ChatConversation class tests resultsccocooevoeieceinecieceeneee. 107
Figure 63 — Snippet of the Group class tests resultsooooo oo iereicice e e 107
Figure 64 — Snippet of the Message class tests resultsccccoooveieieviriecvecine e se e s 107
Figure 65 — Snippet of the UserModel class tests resultsoooeievcrecvecineiveeeseeseievie e 107

TABLE OF TABLES

Table 1 — Non-functional requirements.
S
w16
i
ween22

.22

Table 2 — Personas. .

Table 3 — User stories.

Table 4 — Functional requlrementq -

Table 5 — Description of the fields of the User data table
Table 6 — Description of the fields of the Chat data table. .

Table 7 — Description of the fields of the Audio data table.
—
24
....26
10

Table 8 — Description of the fields of the Message data table..
Table 9 — Description of the fields of the Group data table. ..

Table 10 — Sub-structure of a feature folder. Example of the audlo feature
Table 11 — Tests trade-off. Source: Testing Flutter apps (Teqtmg Flutter appq)
.82

Table 12 — Non-functional requirements full list...
Table 13 — Functional requirements full list..

Table 14 — Test plan. Part 1 out of 5
Table 15 — Test plan. Part 2 out Of 5. e e e e e e e ee e mem e en
Table 16 — Test plan. Part 3 out of 5. ... o
Table 17 — Test plan. Part 4 out of 5. ... oot e e e e ean
Table 18 — Test plan. Part 5 out of 5. e s e e e ee e
Table 19 — USer ACCEPLANCE TESTS .ouveeutuererreeeie e caeeseeeese e as e ces s s saneeseessesns enes e ot as enaen e esennn

14

.23

.95
.96
97
98
.99
100

DEDICATION

To my grandmother,
whose kind stories and warm cakes

are in my most happy memories of childhood.

7

ACKNOWLEDGMENTS

I would like to thank God, my husband, my family, and my supervisor for their support in

the journey of writing this dissertation.

1 ABSTRACT

The number of older adults increases yearly, and they should account for more than 20%
of the population by 2050. These people are more prone to feel alone for many reasons. For
example, their children have already gotten their own families and responsibilities. COVID-19
increased even more in this condition because the elderly were the most fragile to the virus and
had to follow stricter isolation rules. In this context, this project is related to developing an
application to provide a means of communication between the elderly and younger generations
through storytelling, to reduce the feelings of loneliness, anxiety, and sadness of older people.
Many improvements can still be made to the application, and it is intended to tackle them
shortly.

Supervisor: Professor Peter Wood.

2 INTRODUCTION

This report chapter describes the application's context and the motivation for its

development.

2.1 Context

Loneliness is a familiar feeling for many older adults, and the number of seniors
worldwide tends to increase yearly. Human beings are gregarious by nature. That is, it is part
of human nature to participate in social groups, which is closely linked to the evolution of the
species. In this way, the lack of social interaction can cause severe emotional problems, such
as depression, and even lead to more tragic fates, such as suicide.

Some reasons for the decrease in the social contact of the elderly individual can be
divided into three levels. The familiar one: the children have grown up and have their own
families and responsibilities; the cultural one: there is little intergenerational contact, especially
in western societies; and the social one: there is less responsibility from the community on
older members.

In addition to the problems already mentioned, the COVID-19 pandemic has added yet
another layer to the isolation of the elderly: health. Because they are the population most
vulnerable to the virus, the elderly have had to submit to stricter isolation rules than the rest,
aggravating the problem of loneliness among these individuals.

One of the possible solutions for this situation would be using digital technologies to
facilitate contact with this group, which studies have shown to reduce stress and anxiety (Naeim
et al., 2021). However, older people generally have little or no familiarity with new
technologies. That is, they go through a process of double exclusion: not only in the real world
but also in cyberspace.

Thus, a way to facilitate the interaction of the elderly public with new technologies can
be through a design specifically made for the particular characteristics of this population. These
characteristics can be physical: such as loss of visual acuity or decreased hearing capacity, and
they can also be psychological: such as a greater fear of making mistakes when dealing with
electronics and a feeling of frustration.

This report is divided into five parts: Introduction — which provides context; Specification

— which contains information about requirements, personas, and user stories; Design — which

10

explains the design methodology, the software architecture, and the user interface design;
Implementation — which relates the tools and languages used, and each stage of the project
implementation; and Testing and Evaluation, that clarifies decisions taken about the testing
plan, the achievements and drawbacks of the process of developing the application. The

complete background research for the project can be accessed in Castro (2022).

2.2 Motivation

It is in the scenario described above that the Sabid app was designed to increase the
well-being of the population in question. There are three primary motivations for the creation
of Sabia.

The first is personal: I am a Brazilian immigrant in the United Kingdom, where I came
to study for this MSc in Computer Science. I left all my family in Brazil: dog, sister, father,
mother, and grandmother. My grandmother and I are very close, and I know she misses me as
I miss her. As my grandmother is of age and entirely technologically illiterate, I have had
difficulty communicating with her, which is the primary motivation for creating this
application.

The second is social: Thinking about this issue, I realized that it was not just my
grandmother who felt this way. And I decided to research more in-depth about loneliness in
old age, from which the contextualization provided above comes. Also, the issue of COVID-
19 was aremarkable experience for all the people who went through such a drastic global event,
separating families worldwide.

The third is political: The president of Brazil at the time of writing this text is Jair
Bolsonaro, an extreme right-wing politician who has ruled the country since 2019. The extreme
right has taken possession of national symbols such as the flag, the colors green and yellow
and the football team shirt. But there was still a national symbol that remained intact to this
illegitimate appropriation: the Sabid. Sabid, in Tupi, a Brazilian indigenous language, means
the one who prays a lot and is the bird symbol of my country.

A famous poem puts this bird as one of the main nostalgias of a Brazilian in foreign

lands. For clarification, the poem makes more sense in Portuguese because it thymes.

11

Exile song

My land has palm trees
Where the Sabid sings,
The birds that chirp here,
They don't chirp like there.

Our sky has more stars,
Our floodplains have more flowers,
Our woods have more life,

Our life more loves.

In brooding, alone, at night,
More pleasure I find there;
My land has palm trees,

Where the Sabid sings.

My land has primes,

What such I can't find here;

In brooding — alone, at night —
More pleasure I find there;
My land has palm trees,

Where the Sabid sings.

God doesn't allow me to die,
Without my going back there;
Without enjoying the primes

That I can't find around here;
Without ever seeing the palm trees,

Where the Sabid sings.

Gongalves Dias

In short, Sabid is a technical creation but also a social, political, and personal one. And
as a developer, I hope it can represent hope for a more humane world, a more democratic Brazil

and more integrated elderly individuals, including my grandmother.

3 SPECIFICATION

This section of the dissertation addresses the functional and non-functional requirements

with personas and user stories.

3.1 Non-functional Requirements

The non-functional requirements are described in Table 1. For the full list of non-

functional requirements with the final evaluation, please consult Table 13 in appendix 9.1.1.

Table 1 — Non-functional requirements.

Category
Requirement ID Requirement Statement (Must-have
/ Nice-to-have)
The app, the documentation and
N'I]jl'rki'](::] the report shall be ready by Must
19/09/22.
User interface: shall be user-
NFRO2 friendly. Users shall be able to
.- . . Must
Usability navigate the app without
external help.
NFRO3 - Login; .
Security - Password. Ll
NFR0O4 - System documentation; Must
Documentation | - Training material (manual). :

3.2 Personas

The personas are as described in Table 2:

Table 2 — Personas.

Name / Picture

Details

Goal

Joanna

Joana wants to use the app to

hear her granddaughter's stories.

“T want to feel loved”.

Beatriz wants to record stories
for her grandma to listen to

them.

“T want to show how
much T love grandma
even when I am far

away”.

3.3 User Stories

The user stories are as described in Table 3:

15

Table 3 — User stories.

Beatriz

Joanna

As arecording user, I want to record stories to

communicate with my grandmother.

As a listening user, | want to be able to
hear the story my granddaughter sent

me so I do not feel alone.

As a recording user, | want to have a login to

enter the app.

As a listening user, I want to have a

login to enter the app.

As a recording user, | want to save my story

so I do not lose what I recorded.

As a listening user, I want to enter the

app without difficulty hearing the
story.

As a recording user, | want to share my story

with my grandmother so she can hear it.

As a listening user, | want a clean and
user-friendly interface so I can browse

without help from someone else.

34 Functional Requirements

The functional requirements are described in Table 4. Please consult Table 13 in

appendix 9.1.2 for the full list of functional requirements.

16

Table 4 — Functional requirements.

Requirement 1D

Requirement Statement

Category
(Must-have /
Nice-to-have)

FRO1

The app shall have a set-up page.

Must

FRO2

The app shall have a page for the user to
choose between listening to a story or
recording a story.

Must

FRO3

The app shall have a Library page for the
user to select a story to listen to.

Must

FRO4

The app shall have a story player page.

Must

FRO5

The app shall have a recording page.

Must

FRO6

The app shall have an "about your story
page" so the recording user can add
information about the story recorded.

Must

FRO7

The app shall have a "Send a story to" page
so the user can select the recipient for the
recorded story.

Must

FRO8

The app shall have a navigation menu.

Must

FRO9

The app shall have a chat page listing all chat
conversations.

Nice

FR10

The app shall have a user profile page.

Must

The app shall have authentication
persistence, so users do not have to log in
every time they close the app and reopen it.

Nice

FR12

Error case: the user email input is not
registered.

The field for email input should become red,
and an error message should be displayed at
the base of the field with the content: "There
is no account with this email”.

Nice

FR13

Error case: the user email input is not valid.
The field for email input should become red,
and an error message should be displayed at
the base of the field with the content: "Insert
a valid email address".

Nice

FR14

Error case: the password is incorrect.

The password field turns red, and an error
message appears at the base of the field with
the content: "Incorrect password".

Nice

17

4 DESIGN

This chapter of the report concentrates on the design methodology of the application, its

software architecture, and user interface design.

4.1 Design methodology

For the current project, the design methodology chosen was agile, from the iterative
category. As just one person is doing the job, none of the team tools available was used, for
example, ceremonies of daily scrum or sprint review. There are two reasons why this choice
was made: most technologies used were previously unfamiliar, and the requirement for
delivering software that works even with limited functionalities.

For that, some SCRUM principles were used. One of them was the product backlog that
helped to keep the focus on the main priorities and to build them in order. With this one, the
backlog refinement was also used to organize and administrate the product backlog. Another
one was timeboxing which helped to prioritize actions and to avoid perfectionism. Finally, the
refactoring technique was also used to keep the code more maintainable and straightforward,

which helped to modify its preserving functionality.

4.2 Software architecture

The software architecture of the application includes an overview and the main parts of

the software with their relationships.

42.1 Overview

The software architecture chosen for the application development was the layered
architecture (Figure 1). The main reason for this choice was that it has a high level of two
crucial patterns: testability and ease of development. Both are important for bringing not only

easier testing but also simplicity. The application is a classic 2-tier architecture.

18

Software Architecture Overview

Ana Luiza Castro | September 8, 2022

REQUEST

N

Frontend s CLOSED
—

Backend

DATABASE / LOGIC

Figure 1 — Software Architecture Overview.

4.2.2 Flutter Software Architecture

Flutter also has a layered architecture (Figure 2). According to the Flutter developers’
team: “It exists as a series of independent libraries that each depend on the underlying layer.
No layer has privileged access to the layer below, and every part of the framework level is

designed to be optional and replaceable” (Flutter architectural overview).

19

Fram rk Material Cupertino
Dart
Widgets
Rendering
Animation Painting Gestures
Foundation
Engine Service Protocol Composition Platform Channels
C/C++
Dart Isolate Setup System Events
Dart Runtime Mgmt Frame Scheduling Asset Resolution
Frame Pipelining Text Layout
Embedder

Platform-specific

Figure 2 — Flutter Software Architecture.

Source: Flutter, 2022, Available in: https:/idocs flutter deviresources/architectural-overview.

4.2.3 Database design

Figure 3 shows a diagram of the database structure implemented.

20

'.Grm

PK oroupld Saring
roupPicure String
lasiMessage 4
membersUid List=Sting=
name String
{s{ PR £ Slring
timeSent Integer
FK |messages ListcMesss .
{User 0| Chat | [Messanns
<{PK |uid String ~——{ =] PK, FK | contactid [Siring | . WP |messageld [string
omail String uld String isSoun Ba
I=Online Boolean name String FK senderid Stng
name Strng profilePscture Siring Fi |recewvend stmg
profilePiture String fmesent Integer F& |repliedTo Siring
P [chas LgChat> | FK | messages List<Message> |+ Fi | repliedMessage String ks
Pk |audios Ustchudios [) Fi |repliedMessageType |MessageEnum
test Sting
fimeSent integer
FE |ty MessageEnum
Audio
O [Tiescagenin
artu String o
aulhar Siring dit
sFavorite Boolean s
isSeen Boolean
PK |senderid String
mmesent Integer
ke String
url Siring

Figure 3 — Database diagram.

The relationships shown in Figure 3 are detailed below:

e A user can be the creator of multiple groups, but a group can only have one
creator.

e A user can belong to zero, one or many groups, and a group cannot contain less
than two users.

e A group can have from zero to many messages, but a message can only belong to
a single group.

e A user can have from zero to many chats, but each chat is only associated with a
single user and their contact (opposite user or group).

e A chat can have from one to many messages, but a message can only belong to a
single chat.

e A user can have from zero to many audios (received or sent), and audio can
belong to many users.

The description of each database table field can be seen in tables from 5 to 9.

21

Table 5 — Description of the fields of the User data table.

User

Field Type Description
audios String The email address of the user.
isOnline bool It records whether the user is online in the chat.
name String The name of the user.
profilePicture | String The URL of the user’s profile picture.
uid String The id of the user.
chats List<chats> |The list of chats associated with the user.
audios list<audios> | The list of audios associated with the user.

Table 6 — Description of the fields of the Chat data table.

Chat
Field Type Description
contactld String The id of the group or opposite individual.
lastMessage | String The text content associated with the last message.
name String The name of the group or opposite individual.
profilePicture | String The profile picture’s URL of the group or opposite individual.
timeSent int The.: date and time of the last message in milliseconds since the
Unix epoch (1970-01-01-00:00:00).

messages List<Messages> | Messages collection associated with this chat.

22

Table 7 — Description of the fields of the Audio data table.

Audio
Field Type Description
id String The id of the audio.
artUrl String The URL of the image of the story cover.
author String The name of the author of the story.
isFavorite boolean Records whether this audio was marked as favorite.
isSeen boolean Whether this audio was listened to by the receiver.
senderld String The user’s id of the sender.
timeSent int Date and time in which the audio was sent in milliseconds since
tmesen iieser Unix epoch (1970-01-01-00:00:00).
title String The title of the story.
url String Url of the respective audio file.

23

Table 8 — Description of the fields of the Message data table.

Message
Field Type Description
isSeen bool Registers whether the message was seen by the receiver.
messageld String The id of the message.
receiverld String The user’s id of the receiver.
repliedMessage String The id of the message that was replied to (if any).
repliedMessageType | MessageEnum | The type of the message replied to (if any).
repliedTo String The user’s id of the sender of the message replied to (if any).
senderld String The user’s id of the sender
text String The string associated with the message.
timeSent int The date and time when the message was sent.
type MessageEnum | The type of the message, i.e. 'text', 'gif’, or 'audio’.
Table 9 Description of the fields of the Group data table.
Group
Field Type Description
groupld String The id of the group.
groupPicture | String The URL of the group profile picture.
lastMessage | String The text content of the last message.
membersUid |List<String> The list of ids of the group’s members.
name String The name of the group.
senderld String The id of the user that created the group.
timeSent int Thé.: date and time of the last message in milliseconds since
Unix epoch (1970-01-01-00:00:00).
messages List<Messages> | Messages collection associated with this group.

24

4.2.4 Application’s package structure

The application’s package structure follows the Flutter layout convention (Package
layout conventions). Figure 4 shows the structure implemented, with the description of the

primary objective of each file and directory in the package.

bbk_final_ana_\

=<Top level=>

~ N
assels \ li 1est \

The kb folder contains the
primary logic of the app.
The subfolders are
organized by app's

The assets folder the
custom fonts and images
used to compose the Ul

The test folder cantains all
the tests implement

- feature, -
audio | messaging |
Fa The messaging folder

contains all files related to
the feature of sending text,
gif or audio messages,
including the possibility of
creating chat groups

The audio folder contains.
all files related to the ol
feature of listening and
recording audio stories.

auth \

The auth folder contains
all files related to the
user's authentication

COMMORN \

The comman foider
contains components and
classes that are used
throughout the app.

r e

unls \

The utils folder contains
support functions to show The landing folder
messages or pick images contains the landing

from the gallery or gifs screen
fram via Giphy API

Tanding \

main \ Touter \

The router contains the

The main conlains the:
method the executes the
app

foute generator callback

used when the app is
navigated to a named

route,

Figure 4 — Application’s package structure.

Some directories and files generated automatically by the IDE (Android Studio) were
omitted. In addition to the structure above, every package has a file named pubspec .yaml in the
root directory. This file contains the list of the package’s dependencies.

Additionally, the iOS and Android directories contain the files generated automatically

by the IDE that “convert” a flutter project into an iOS and Android project. Considering the

25

scope proposed for this project, the only manual changes made were in the android folder,

specifically in the build gradle and AndroidManifest xml files, to adjust permissions and

versions necessary to run the external libraries imported.

4.2.5 Design patterns applied

As described in Figure 4, the lib folder contains the primary logic of the app. App’s

features are organized in respective subfolders. The internal structure of the subfolders follows

the model-view-controller (MVC) design pattern (whenever applicable).

Table Table 10 presents, as an example, the internal structure and the function of its

components of the folder related to the audio recording and playing feature.

Table 10 — Sub-structure of a feature folder. Example of the audio feature.

Feature

Sub-folder

Description

audio

controller

This folder contains the classes used to intermediate the
interaction between the model classes in the repository folder
and the UI classes in the screens folder.

enums

This folder contains the Enumerations used to specify the state
of the program.

notifiers

This folder contains the classes used to update and store the
application’s state and notify the Ul when the state changes. The
controller classes call those classes to update the state of the
program.

repository

This folder contains the model class that contains the methods
called by the controller and interacts with the database services
fetching and updating data.

sCreens

This folder contains the classes that implement the application’s
user interface (UI). The Ul lets the user know the application’s
state and interact with it. Events associated with the user’s
interaction trigger methods of the controller classes.

widgets

This folder contains the graphical components of the screens
that compose the UL

26

The provider or observer pattern “enables a subscriber to register with and receive

notifications from a provider. It is suitable for any scenario that requires push-based

notification” (Observer Design Pattern). The provider pattern is used with the MVC pattern to

notify the controller classes and the Ul about changes in the app’s state. App’s state is the state

that is not ephemeral, that needs to be shared across many parts of the app. and often is kept

between user sessions.

Figure 5 presents an app’s feature architecture using the MV C design pattern associated

with the provider pattern.

Data or Request

} Firebase

.
[
=1
=
w
View
(Ul Controller Model
Event Event
Log in Screen Ul Auth Controller Auth Repository
Provider Provider
provides new prowides new
state state
The view renders The controlier The model is
presantation of the respands to the user responsible for
model in a particular nput and performs managing the data of
format. Events interactions on the the application. It
associated with the data model cbjects TECeives user input
user's interaction The eantrolier from the controlier
trigger methods of the receives the input
controller classes optionally validates it

and then passes the
input to the model

Respanse

Storage service

Figure 5 — Example of an app’'s feature architecture using the MVC design pattern associated with the
provider/observer pattern. The descriptions of functions of the view, controller, and model found in
(Buschmann et al, 1996) were used.

27

4.2.6 Use case diagram

A diagram of the use cases can be found in Figure 6.

Audio stories sharing app

Figure 6 — Use case diagram.

28

4.3 User Interface design

The user interface design was done applying the notion of universal design created for
the architectural realm by Ronald L. Mace but which can be transferred for the design of
applications. “Universal design is the design of products and environments to be usable by all
people, to the greatest extent possible, without the need for adaptation or specialized design™
(Mace, 1985 apud Kalbag, 2017, p. 9).

One of the universal design principles was choosing readable typography and large text
font. Making all the text in the app larger makes the app more inviting and easier to read. Itis
essential because one of our personas is an older adult, and this user may have eyesight
degeneration due to age. That is also why Sabid is an audio exchange app because it favors
listening instead of the optical component. In addition, these characteristics not only favor older
adults that may have reduced eyesight but also other humans of different ages with the same
type of disability. Figure 7 is an example of the typography and font size chosen for the

application:

Listen to a story

Figure 7 — Example of typography and font size.

29

Another universal design principle used was how the error messages appear. In this case,
they are clearly written and suggest what the user should do to rectify the error, as shown in
Figure 8. There might be doubt of why the error message is not given in red, as usual. That is
because people with visual impairments sometimes cannot recognize the red color. Because of

that, we chose a black and white notification.

13:32 M M

1]

asdfgh jk I

& z xcvbnmdE

7123 @ © N]
v L O

Figure 8— Error message example.
Although there are still errors that need to be fixed, in Figure 9, it is possible to see that

there is still a technical message appearing related to Firebase. This type of occasion can make

the user confused and frustrated:

30

(nuMM 0O Cus
£

ana@email.com

(-)

[firebase_ ong-pa ord] The
password is invali er does not
have a pass

1234567890

gwer tyuiop
asdf gh j kI

& z xcvbnmd

7123 -
v ® a

Figure 9 — Technical error message example.

In addition to these, two other characteristics were considered. The first was the user
journey, which was planned to be straightforward. It can be checked in the user manual in
appendix 9.2. The second one is that a mobile application was chosen over a web application
because smartphones are cheaper than desktops or notebooks, so it is possible to reach more
people. Besides, Android is also more affordable than iOS, thus our preferable operating
system.

Another critical aspect of the user interface is that the personas were always being
considered while developing the app. That is essential for another tool that was used in this
project, which was Emotion Design. The idea is based on Walter's (2011) work about designing
with emotion. Essentially, the context is that “positive emotional stimuli can be disarming. It
builds engagement with your users, which can make the design experience feel like a chat with
a friend or a trusted confidant” (Walter, 2011, p. 21).

And that was key because, during the context research, an essential factor was

discovered: that one of the main difficulties of the older adults was being afraid of making

31

mistakes while dealing with technology, which led to frustration. Thus, the user interface was
made to be inviting and warm to bring the user closer to the app.
An interesting idea of Walter (2011) is to have a Maslow's Hierarchy of Needs, which

can be seen in Figure 10, but for the users' needs, shown in Figure 11:

self-
actualization

love/belonging
physiological

Figure 10 — Maslow's hierarchy of needs.
Available in: (Walter, 2011, p. 13).

pleasurable

functional

Figure 11 — Hierarchy of users’ needs.

Available in: (Walter, 2011, p. 13).

32

The main idea is that the applications already have three foundational parts: functionality,
reliability, and usability. But there is a missing but essential part related to the user's pleasure
while dealing with the application. And that was what the user interface of the Sabid app aimed
to achieve (Figure 12).

10:44 M B4 LINCER SRV |

Figure 12 — Example of Sabia's user interface.

33

5 IMPLEMENTATION

This chapter describes the technologies and languages used. It also discusses each stage
of the project implementation. Each stage is described in terms of the objective to accomplish,

the implementation process, and the challenges faced.

5.1 About the technologies, tools and languages used

This section concentrates on the tools and languages used: Flutter, Dart and Firebase.
51.1 Flutter

Flutter is a set of portable User Interface tools created by Google. It is developed in C,
C++, Dart and Skia Graphics Engine, a compact graphics library. The default programming
language used by Flutter is Dart. It is common to see these two technologies being used
together. Dart is a scripting language created in 2011 by Google to replace JavaScript.

Also, Flutter is open source, and all its code is available on GitHub. Some of the creations
with Flutter are Google Ads and Google Green Tea, as well as apps from Alibaba, Abbey Road
Studios and Tencent.

Flutter has three main advantages:

e The first is to create applications quickly. Starting with Stateful Hot Reload, an
automatic update of the app that enables the project file to be saved almost
instantly and without losing the status of the application. With Flutter, it is
possible to use several customizable widgets already developed reactively.
Widgets are an essential point to speed up development. Since the core idea of
Flutter is to use widgets to build the user interface in addition, it can be integrated
with several IDEs and editors, for example, Android Studio, XCode and VSCode.

e The second is to create aesthetic and flexible User Interfaces. It allows complete
control of every pixel on the screen as it brings widgets, rendering, animation,
and gestures into the framework, making the design more flexible and
personalized.

e And the third is to maintain the application's native performance. Apps built in
Flutter are built directly into native ARM, use the GPU, and can access platform
APIs and services. In addition, it can be integrated with already developed

applications.

34

In summary, it is possible to create hybrid applications and maintain native performance
with Flutter. With just one code, create an app that will run on Android and iOS and maintain
native performance on both.

Other tools for cross-platform development are React Native, lonic, and Xamarin.
Xamarin is Microsoft's platform for building a hundred per cent native mobile apps. Apps for
Android, 10S, Windows, Apple Watch, Smartwatch, Google Glass, and Apple TV can be
developed by accessing the native APIs of each of the platforms. Xamarin aims to share the
same code base for building apps on multiple platforms. In addition, Xamarin is also open
source.

According to the Xamarin documentation, applications generated with the platform are
native. They contain standard Ul controls, have access to all the functionality the platform
exposes through its APIs, and have the same performance as native applications. A nice feature
is an interoperability that Xamarin provides, being able to directly invoke Objective-C, Java,
C++and C along with their libraries. Some projects and companies that use Xamarin are Azure

App, UPS, BBVA and BBC Good Food.
5.1.2 Dart

Dart is an object-oriented, multi-paradigm programming language created by Google. It
is very versatile and can be used to develop maobile and desktop applications and create scripts
and the backend. The language's most popular framework is Flutter, which can be used in

Intelli] IDEA, VSCode, Sublime, Atom, etc.
5.1.2 Firebase

Firebase is linked with mobile application development. It can be classified as a BaaS,
Backend as a Service, a cloud computing service that serves as Middleware, providing
developers with a way to connect their mobile and web applications and cloud services using
APIs and SDKs. BaaS makes it possible to completely abstract the server-side infrastructure,
which allows developers to focus on the user experience instead of dealing with the backend
infrastructure and coding. Today Firebase is the leading platform for Google's mobile
development and is part of the Google Cloud Platform suite of products.

Firebase is also a database but has at least eighteen products within its platform. Through
Firebase, it is possible to send and receive messages and notifications. It is still possible to

create segmentations, customize the content for the user and send messages using the time

35

zone. In addition, Firebase integrates with the Analytics area, where all information about sent
messages, such as engagement and conversion, can be tracked. It can be done without coding
using Firebase Cloud Messaging (FCM).

In terms of programming language, frameworks, and other technologies, it is possible to
use several in conjunction with Firebase, such as Java, Swift, Objective-C, Python, JavaScript,
NodelS, C++, React, etc.

One of the top products for development solutions is Cloud Firestore, which is the no-
SQL database with which it is possible to store, query and practically synchronize data. The
synchronization part is essential because there is no need for a server for the application, as it
is possible to use a backend code that manipulates the database. Cloud Functions is responsible
for executing code on the backend without having to manage servers. With Firebase, it is
possible to have a complete package of solutions.

Another critical development solution is Firebase Authentication, which facilitates the
user registration and login process using platforms such as Google, Facebook and GitHub.

There are competitors, like Parse, bought by Facebook, which is open source. There is
also Backdapp which is a complete BaaS platform. But Firebase is currently the dominant and

most complete platform on the market.

52 Description of the final product

52.1 Software development methodology

As mentioned before, the development methodology adopted was iterative and
incremental software prototyping due to most technologies being previously unfamiliar. In
each phase, simplified prototypes of components were developed before being improved and
incorporated into the overall program. For example, a simple audio recorder and player were
developed initially to become familiar with the audio library used before implementing the
complete audio functionality of the application.

The implementation process was divided into sprints to deliver a specific functionality
set. Features were built up incrementally, adding more functionality during each sprint (Figure
13). Within each sprint, the functionalities developed were debugged and improved in

iterations.

36

10

11

12

13

14

*Set up the Flutter project and build a simple recorder and player.

#Set up Firebase and build audio upload to database functionality.

sCreate a landing page and implement the user’s login and sign-up.

*Implement user profile information management and save user data to Firebase.

sImplement authentication persistence.

sImplement select recipients from the user’s cell phone contacts.

*Display chat conversations and send text, emoji and gif messages.

*Implement reply to messages, "online/offline" and “is seen” features.

*Group creation, display group conversations and send messagesto a group.

sImplement library and player Ul.

S

shuffle playlist.

*Implement listening to playlist, seeking a position in the audio, skip audios, repeat and)

J

sImplement listening to a playlist with a locked screen.

)

sImplement fetching audios from Firebase.

*Improve audio recorder, record preview, the addition of metadata and sending it to
other users.

Figure 13 — Implementation Sprints

The following subsections will detail each sprint’s objectives, deliverables and

development highlights.

37

5.2.2 Sprint 1: Set up the Flutter project and build a simple recorder and player

52.21 Objectives

e Setup the base Flutter project.
¢ Build a simple recorder to record audio and save the file locally in a temporary cell
phone directory.

¢ Build a simple player that would allow listening to the audio recorded.

5.2.2.2 Implementation highlights

After installing and setting up the Dart SDK, the Flutter SDK, the Android Studio IDE
with the respective Flutter plugin, and the Android emulator, I started a standard new Flutter
project that comes with some base code (Write your first Flutter app).

I used the external package flutter_sound to implement the audio recorder and player.
The examples provided by the package author were used as a reference for implementing an
audio recorder class, a player class and a simple Ul for testing the implementation. Figure 14
shows the different states of the application in the process of recording or playing recorded

audio. The audio files were saved locally in a temporary directory.

Simple Recorder € Simple Recorder
State 1: State 3:
« Recorder stopped. R oo oo *+ Recorder stopped.
* No audio recorded yet. * Audio recorded.
* Player cannot be used S * Player can be used.

State 2: State 4:

¢ Simple Recorder
A

* Recorder in progress. Recedng i progess * Player in progress. SLL
* Player cannot be used. * Recorder stopped and
cannot be used
nayer o stoped [s JETCETTEE
|

Figure 14 - Different application states recording or playing recorded audio in sprint 1.

52.23 Challenges

Installing and setting up the Dart SDK, the Flutter SDK, and the Android Studio IDE
with the respective Flutter plugin is complex and time-consuming. The references (Windows
install) and (How to Install and Setup Flutter for App Development on Windows) were
instrumental in overcoming the challenges.

Recording and listening to the first audio took me three days. After implementing and

extensively debugging the code of an elementary recorder and player, I still could not hear the

38

audio recording. | started investigating issues outside the code implemented. | discovered that
I could not use a Bluetooth headset but had to use a wired one. Also, [had to set up the Android

emulator to accept the inputs from the computer headset microphone (Figure 15).

s D30« e 8 @D

™ Pixel 3 4P) 30 - Extended Controls A

@ Locaton Vit haadset phug rserted

[1]

Displays
4 Celular virtual headset has monophone:

B GBattery

Virtusal microphone uses host sudo nput

€3 Ccamera ®

. Phone WMWCL&{W
Uite to de teday?

© Directional pad

Fingerprint

*, virual sensors

& Bugreport
Record a story

B Record and Playback

B+ Google Play

£x senings

@ tep

Figure 15 - Setting up the Android emulator to receive the headset microphone input.

5.2.3 Sprint 2: Set up Firebase and build audio upload to database functionality

5.2.3.1 Objectives

e Setup a Firebase project.
¢ Link the Firebase project with the app.

¢ Implement the functionality of uploading the recorded file to Firebase.

5.2.3.2 Implementation highlights

To set up the Firebase project for Android and link it with the Flutter app, I followed the
tutorial from Yu (2021).

39

Cloud Storage tor Firebase is an object storage service associated with Firebase (Cloud
Firebase Storage). To use it in a Flutter project is necessary to add the external packages
firebase_core and firebase_storage as project dependencies. The FirebaseStorage is the class
associated with the Cloud Storage for Firebase. The class CommonFirebaseStoreRepository

(Figure 16) was created to store files in the FirebaseStorage.

import 'dart:io';

import 'package:firebase storage/firebase storage.dart';

class CommonFirebaseStoreRepository {
final FirebaseStorage firebaseStorage;

CommonFirebaseStoreRepository ({required this.firebaseStorage});

FirebaseStorage

Future<String> storeFileToFirebase (String path, File file) async
{
UploadTask uploadTask =
firebaseStorage.ref () .child(path) .putFile (file);
TaskSnapshot snapshot = await uploadTask;
String downloadUrl = await snapshot.ref.getDownloadURL();
return downloadUrl;

}

Figure 16 — Code snippet of the class responsible for storing files in the FirebaseStorage.

5.2.3.3 Challenges

It is not straightforward to link the Firebase with the Flutter project. Even following the
step-by-step guidance provided by the Firebase console and the tutorial from Yu (2021), the
project was not running. Debugging the errors via the application’s console, I figured out that
I had to change to minimum Android SDK versions of the project to make it compatible with

Firebase (Figure 17).

40

android {
compileSdkVersion 33
ndkVersion flutter. ndeer51on

compileOptions {
sourceCompatibility JavaVersion.VERSICN 1 8
targetCompatibility JavaVersion.VERSICN 1 8
}

defaultConfig {
applicationId "bbk.student.anacastro.bbk final project"
minSdkVersion 24 t "hange tf
targetSdkVersion 233 1
versionCode flutterVeISLonCDde toInteger()
versionName flutterVersionName

}

buildTypes {
release {
signingConfig signingConfigs.debug
}

Figure 17 — Code snippet from “build.gradle” file in the Android app directory, adjusted for compatibility with
the Firebase project.

52.4 Sprint 3: Create a landing page and implement the user’s login and sign-up
52.4.1 Objectives

e Create a landing page.
e Implement the user login with email and password.

¢ Implement use sign-up with email and password.

5.2.4.2 Implementation highlights

Due to the problem being tackled by this project, having a pleasant and accessible user
interface is one of the priorities. Therefore, I opted to implement the landing page with some

animations and a friendly design.

41

The built-in curved animation (Curves class) and the animated_text_kit external package

were used to implement the landing page. After passing a ticker (like a clock ticker) to an

animation controller, Flutter’s curved animation will provide a value that will vary from 0 to 1

within a specified time frame. This value is used to control the visibility of elements on the

screen, generating a visual animated effect (Figure 18).

[doverriae
Widget build(BuildContext context) |
return Scree cStructure
child: Padding(
padding: const Edgelnsets.symmetric(horizontal: 24.0),
child: Column(

mainAxisAlignment: MainAxisAlignment.center,
crosshxisAlignment: CrossAxisAlignment.center,
children: [
Row {
mainAxisAlignment: MainAxisAlignment.center,
children: [
Tl A
animation.value > 0.
7 const Expa
const Ei

Expan

1,
1

const Siz sox (height: 12.0),
animation.v ue < 0.6
? const A
const B

Figure 18 — Code snippet from the landing page. It shows an example of the use of the animation value that

varies with time to control the visibility of elements, resulting in an animated visual effect.

The firebase_auth package was used to implement the app’s authentication process. This

package provides backend services to authenticate users and supports authentication using

passwords, phone numbers, and identity providers like Google, Facebook and Twitter (Firebase

Authentication).

The AuthRepository class was created to manage the app’s authentication process. The

authentication process consists of signing up new users, logging in existing users, logging out

users, saving, editing, or getting the user’s profile and status information. Figure 19 shows the

42

code snippets of the methods of the AuthRepository class to log in and sign up users using the

FirebaseAuth.

import 'package:flutter/material.dart’';
import 'package:firebase auth/firebase auth.dart';
import 'package:bbk final ana/utils/utils.dart';

()

class AuthRepository {
final FirebaseRuth auth;
final FirebaseFirestore firestore;

RuthRepository ({required this.auth, required this.firestore});

Future<bool> signInWithEmail (
BuildContext context, String email, String password) async {
bool didSucceed = true;
try {
final user = await auth.signInWithEmailAndPassword(
email: email,
password: password,
)i
} on Exception catch (e) {
didSucceed = false;
showSnackBar (context: context, content: e.toString());
}

return didSucceed;

Future<bool> createlUserWithEmailAndPassword(
BuildContext context, String email, String password) async {
bool didSucceed = true;
try {
final newUser = await auth.createUserWithEmailAndPassword(
email: email,
password: password,
)i
} on Exception catch (e) {
didSucceed = false;
showSnackBar (context: context, content: e.toString());
}

return didSucceed;

()

Figure 19— Code snippet of the methods of the AuthRepository class to log in and sign up users using the
FirebaseAuth.

43

5243 Challenges

Asexplained in section 4.2.5, the MVC and provider design patterns were used to comply
with the SOLID design principles (The Principles of OOD). Although very important, the use
of such design patterns can make the code more complex. Due to my lack of experience, their
implementation was challenging.

In addition, I chose the use flutter_riverpod package to implement the provider design
pattern to share the application state across different parts. Riverpod is a state-management
library that catches programming errors at compile time rather than runtime, removes nesting
for listening/combining objects and ensures that the code is testable (Riverpod 1.0.3+1).

Despite the benefits, using Riverpod comes with a learning curve, which was also challenging.

52.5 Sprint 4: Implement user profile information management and save user data to

Firebase

52.51 Objectives

e Implement the initial user’s profile set-up (name and picture) after signing up.
¢ Implement the possibility of changing the profile information.

e Save the user data to Firebase.

5.2.52 Implementation highlights

The image_picker package was used to pick images from the cellphone gallery. Figure
20 shows the picklmageFromGallery method developed using the image_picker package. This

method will return null if the user does not select any file from the gallery and returns to the

app.

44

import ' kage:flutter/material.dart’';

import 'dart:io';
import 'package:image picker/image picker.dart’';

Future<File?> pickImageFromGallery (BuildContext context) async |
File? image;

try {
final pickedImage =
await ImagePicker ().pickImage (source: ImageSource.gallery);
if (pickedImage != null) {
image = File (pickedImage.path);
}

} catch (e) |

showSnackBar (context: context, content: e.toString());
}
return image;

}

Figure 20 — Code snippet of the pickimageFromGallery method developed using the image_picker package.

This method will return null if the user does not pick any file from the gallery and returns to the app.

The Cloud Firestore is a cloud-hosted, NoSQL document database to store, sync, and

query the app’s data (Cloud Firestore). Figure 21 shows the method developed to save users’

data to Firebase, which sits under the AuthRepository class.

45

import 'dart:io';

import 'package:bbk final ana/common/constants/constants.dart’;
import 'package:bbk final ana/models/user model.dart';

import 'package:bbk final ana/utils/utils.dart';

import 'package:cloud firestore/cloud firestore.dart';

import 'package:firebase auth/firebase auth.dart';

import 'package:flutter/material.dart’';

import
'../../common/repositories/common firestore repository.dart';

class AuthRepository {
final FirebaseRuth auth;

final FirebaseFirestore firestore;

RAuthRepository ({required this.auth, required this.firestore});

vold savelUserDataToFirebase ({
required String name,

required File? profilePicture,
required BuildContext context,
required CommonFirebaseStoreRepository firebaseStoreRepository,

1) async {

try {
String uid = auth.currentUser! .uid;
String photoUrl = kStandardProfilePicUrl;
if (profilePicture != null) |

photoUrl = await
firebaseStoreRepository.storeFileToFirebase (
'profilePicture/Suid', profilePicture);
}
var user = UserModel (
name: name,
uid: uid,
profilePicture: photoUrl,
isOnline: true,
email: auth.currentUser!.email.toString(),
groupld: [],
)i
await
firestore.collection('users').doc (uid).set{user.toMap());
} on Exception catch (e) {
showSnackBar (context: context, content: e.toString());

}

Figure 21 — Code snippet of the method developed to save users’ data to Firebase, which sits under the
AuthRepository class.

46

52.53 Challenges

The biggest challenge in this sprint was to address the possibility of the user opening the
cellphone’s gallery to pick a profile picture but not selecting one. If the user has a previous
profile picture, that picture should not be changed if this situation happens. A standard profile
(Figure 22) should be attributed if the user does not have a profile picture yet. The

implementation of this logic was somewhat challenging.

Figure 22 — Standard profile picture designed with Figma (Figma). A standard profile picture should be
attributed if the user does not have a profile picture yet and has not selected any from the cellphone’s gallery.

5.2.6 Sprint 5: Implement authentication persistence

5.2.6.1 Objective

¢ Implement authentication persistence so the users do not have to log in when they close

and reopen the app.

5.2.6.2 Implementation highlights

Some steps were necessary to implement the authentication persistence. First, a method

to get the current user’s data was implemented in the AuthRepository class (Figure 23).

47

import 'package:bbk final ana/models/user model.dart';
import 'package:firebase auth/firebase auth.dart';

()

class AuthRepository {
final FirebaseRButh auth;
final FirebaseFirestore firestore;

RuthRepository ({required this.auth, required this.firestore});
(...)

Future<UserModel?> getCurrentUserData () async {
var userData =

await
firestore.collection('users') .doc(auth.currentUser?.uid) .get ();
UserModel? user;
if (userData.data() != null) {
user = UserModel.fromMap (userData.data()!);

}

return user;

Figure 23 — Code snippet of the method in the AuthRepository class to get the current user’s data.

Following the MVC pattern, a method called the getCurrentUserData method above
was developed in the AuthController class. Then a userDataAuthProvider (Figure 24) was

created to provide the current user data to the app’s root.

final userDataRuthProvider = FutureProvider ((ref) |
final authController = ref.watch{authControllerProvider);
return authController.getCurrentUserDatal);

P

Figure 24 — Code snippet of the provider of the current user’s data.

The app’s root widget watches the userDataAuthProvider, and if the user is logged in, it

skips the landing page (WelcomeScreen) and goes directly to an internal screen of the app

48

(InitialDecisionScreen). Otherwise, it returns the WelcomeScreen, where the user will be able

to log in or sign up. See Figure 25.

i)
vold main() async {
WidgetsFlutterBinding.ensurelnitialized();

awailt Firebase.initializedpp();
await initRAudioServicel() ;
runhpp (const ProviderScope (child: MyApp()));

class MyRpp extends ConsumerWidget {
const MyApp ({super.key});

@Goverride
Widget build(BuildContext context, WidgetRef ref) ({
return Materiallpp(
debugShowCheckedModeBanner: false,
title: 'Sabia’',
theme: ThemeData(...),
onGenerateRoute: (settings) => generateRoute (settings),

home: ref.watch (userDatahuthProvider) .when(
data: (user)

if (user == null) {
return const WelcomeScreen():

t

return const InitialDecisionScre
by
error: (e, trace) {

return ErrorScreen{error: e.toString());
tr
loading: () => const LoaderScreen()),

}

Figure 25 — Code snippet of the implementation of the authentication persistence in the app s root.

52.63 Challenges

Again, the biggest challenge in this sprint was the learning curve related to using the

Riverpod package to implement the provider associated with the MVC design patterns.

49

5.2.7 Sprint 6: Implement select recipients from the user’s cell phone contacts

52.7.1 Objective

¢ Implement the function of selecting users that are registered both in the app and the cell

phone contacts with the same email.

5.2.7.2 Implementation highlights

Unlike other audiobook apps, this project focuses on the exchange of audio stories among
people who actually know each other. Due to that, the app should only allow users to select
recipients for sending messages and audio from the intersection between the users registered
in the app and the contacts on their respective cell phones.

As email is the primary identifier used for user authentication, the contact in the cell
phone must contain the same email to show up in the available recipients’ list. Figure 26 shows
the code snippet of the method that returns the users whose email is the in the cell phone’s
contact and registered in the app. The package flutter_contacts was used to access the

cellphone’s contacts.

50

import 'package:bbk final ana/models/user model.dart';
import 'package:cloud firestore/cloud firestore.dart';
import 'package:flutter/material.dart’';

import 'package:flutter contacts/flutter contacts.dart';

class SelectContactRepository {
final FirebaseFirestore firestore;

SelectContactRepository ({reguired this.firestore});

Future<List<UserMocdel>> getUserContacts () async {
List<UserModel> userContacts = [];
try {

]

if (await FlutterContacts.requestPerr
var allDeviceContacts =
await FlutterContacts.
getContacts (withProperties: true);
List<String>» myContactsEmailAddresses = [];
for (var contact in allDeviceContacts) |
for (var email in contact.emails) |
myContactsEmailAddresses.add(email .address);

nission()) |

1
}
var userCollection = await
firestore.collection('users').get();
for (var document in userCollection.docs) |
var userData = UserModel.fromMap(document.data()):
String registeredEmail = userData.email;
if (myContactsEmaillRddresses.contains (registeredEmail))
userContacts. add (userData) ;

}
} catch (e) {

debugPrint (e.toString());
}

return userContacts;

{

Figure 26 — Code snippet of the method that returns the users whose email is the in the cell phone’s

contact and registered in the app.

5273 Challenges

The biggest challenge in this stage was that many emails could be registered under the

same contact on the cell phone. The method developed had to consider that at least one of them

51

matched with the email of a user registered in the app so that this user would show up in the

possible recipients’ list.

5.2.8 Sprint 7: Display chat conversations and send text, emoji and gif messages

5.2.8.1 Objectives

¢ Implement selecting a contact and starting a new chat conversation.

¢ Implement typing and sending a new text message to a contact.

e Implement fetching messages from a conversation from Firebase and displaying them
in the correct disposition on the chat screen.

¢ Implement fetching 1-2-1 conversations from Firebase and displaying the list on the
UL

e Implement selecting emojis and sending them to contact.

¢ Implement selecting GIFs and sending them to contact.

5.2.8.2 Implementation highlights

The functionality of selecting registered users in the app and the device contacts with the
same email was developed in the previous sprint (item 5.2.7). After selecting the contact, a user
is redirected to the chat screen. The chat conversation is created in the database once the first
message is sent.

A text bottom chat field component was developed to allow the user to type a new text
message, similar to other messaging apps.

The methods to send a text message, create a chat conversation, save a message in a
conversation and fetch the messages sit under the ChatRepository class. The external packages
cloud_firestore and firebase_auth were used to get and send chat data to Firebase. Figure 27

shows the method to fetch the stream of messages of a chat conversation as an example.

52

Stream<List<Message>> getChatStream(String receiverId) {
return firestore

.collection('users"')

.doc (auth.currentlU

.collection{('chats

.doc (receiverId)

.collection('messages')

.orderBy('timeSent')

.snapshots ()

.map ((event) {
List<Message> messages = [];
for (var document in event.docs

var message = Message.fromMap

messages.add (message);
}
return messages;

I3

Figure 27 — Code snippet of the method to fetch the stream of messages of a chat conversation. This method sits
under the ChatRepository class.

The package emoji_picker_flutter was used to pick emojis. Emojis are Strings and can
be sent via the same method used for sending text messages.

The package enough_giphy_flutter is used to interact with the Giphy API (Giphy) to
allow the user to select GIFs. GIFs are similar to image files hosted online. Their URL is saved
to the database and shown on the screen via a cached network image component. This
component downloads the web-hosted asset and saves it to the device’s cache memory, which
prevents having to download the file every time it is shown on the screen. The package

cached_network_image is used to display cached images from URLs.

52.83 Challenges

In addition to challenges related to the use of the design pattern already described, the
main challenge of this sprint was the volume of UI components that had to be produced and
debugged. The interaction with different external packages demanded studying a large amount
of documentation.

It is important to emphasize that the logic implemented to send messages developed
during this sprint is very similar to the one implemented for sending the audio stories.

Therefore, the work done in this sprint set the foundations of the primary functionalities of the

app.

53

52.9 Sprint 8: Implement reply to messages, “online/offline”, and

(134

is seen” features

52.9.1 Objectives

Implement swiping laterally a message received to reply to it.
Implement a way for users to check if a contact is online or offline to chat.
Implement a way for the sender to check whether the receiver has seen the messages

sent.

5.2.9.2 Implementation highlights

The external package swipe_to provides a Ul component that allows one to associate a

method to the lateral swipe gesture. This component was used to “wrap™ the message bubble

on the chat Ul Figure 28 shows the code snippet of the MessageReply class and provider used

to control whether the user is replying to a chat message.

}

import 'package:bbk final ana/common/enums/me
import 'package:flutter riverpod/flutter riverpod.dart';

messageReplyProvider | provia 1 [MessageReply|
hat, a2 new [MessageReply
[StateProvider ipdated.
messageReplyProvider | 110 null.
final messageReplyProvider = StateProvider<MessageReply?>((ref) =>
null) ;

class MessageReply {
final String mess:z
final bool isMe;
final MessageEnum messageEnum;

MessageReply(this.message, this.isMe, this.messageEnum);

e enum.dart';

MessageReply

messageEnum

Figure 28 — Code snippet of the MessageReply class and messageReplyProvider that were used to control
whether the user is replying to a chat message. The comments explain the details of the implementation logic.

54

The key to implementing the “online/offline” feature is to add a binding observer to the
application when the user opens the screen with the chat conversations. Binding observers are
notified when various application events occur. Whenever the application’s lifecycle state is
“resumed”, which means that the application is visible and responding to user input, the user’s

state should be changed to online, otherwise offline (Figure 29).

55

[ConversationsScreen] is the screen with the list of

class ConversationsScreen extends ConsumerStatefulWidget |
const ConversationsScreen({Key? key}) : super(key: key);
static const String id = '/conversations';

@Boverride
ConsumerState<ConversationsScreen> createState() =>

ConversationsScreenState () ;

}

class ConversationsScreenState extends
ConsumerState<ConversationsScreen>
with WidgetsBindingObserver |

fBoverride
void initState() {
super.initState();

WidgetsBinding.instance.addCbhserver (this);
override

void dispose() |
super.dispose();

y

WidgetsBinding.instance. removeCbserver (this);

}

fBoverride
vold didChangelfpplifecycleState (AppLifecycleState state)
super.didChangelfpplLifecycleState(state);

the app is open, paused, closed.

switch (state {

case AppLifecycleState.resumed:
ref.read(authControllerProvider) . setUserState (true) ;
break;

case AppLifecycleState.paused:

case AppLifecycleState.detached:

case AppLifecycleState.inactive:
ref.read(authControllerProvider) .setUserState (false);
break;

()

Figure 29 — Code snippet of the “online/offline” functionallity.

56

The method setUserState was added to the AuthRepository class to update the user state

in the database (Figure 30).

O

fi

id setUserState(bool isOnline) async {

await

restore.collection('users') .doc (auth.currentUser!.uid) .update (|
'isOnline': isOnline,

1)

field

Figure 30 — Code snippet of the setUserState method that sits under the AuthRepaository class.

The method setMessageSeen was created in the ChatRepository class to update the isSeen

of the message in the database when the recipient opens the chat screen with new

messages. Figure 31 shows the code snippet of the verification in the ChatScreen to check

whether it should be set as seen. A double-blue check icon is displayed on the Ul close beside

the messages that were seen by the recipient.

if

}

(!messageData.lsSeen &&
(messageData.receiverld ==
firebasehuth,currentUser!.uid)) {
ref.read(chatControllerProvider) .setChatMessageSeen (
context,
widget .receiverld,
messagelData.messageld,

)i

Figure 31 — Code snippet of the verification to set a message as seen when a user visualizes it. This snippet can

be found on the ChatList Ul component.

5293 Challenges

The biggest challenge of this sprint was to figure out how to observe the application’s

lifecycle state and update the user status accordingly. Fortunately, the Flutter documentation

(WidgetsBindingObserver class) is comprehensive and provides the necessary information.

57

5.2.10 Sprint 9: Group creation, display group conversations and send messages to a

group
5.2.10.1 Objectives

e Implement the creation of groups of users.
e Display the group conversations in a list.

e Implement sending and receiving messages from a group.

5.2.10.2 Implementation highlights

The GroupRepository class is responsible for interacting with the database to store new
group information. This class contains a single method called createGroup that creates a new
group based on a selected user list and stores its information in the database. Figure 32 shows
a code snippet of this class. The details of the fields related to the group data table can be found

in this report’s Table 9.

58

import...

|GroupRepository

class GroupRepository |

final FirebaseFirestore firestore;
final FirebaseRButh auth;

GroupRepository ({
required this.firestore,
required this.auth,

1)

void createGroup (
BuildContext context,
String name,
File profilePicture,
List<UserModel> selectedContacts,
CommonFirebaseStoreRepository firebaseStoreRepository,

) async |
try |
List<String>» userlIds = [...selectedContacts.map((e) =>
e.uid)];
var groupld = const Uuid().v1();

String profileUrl = await
firebaseStoreRepository.storeFileToFirebase (

'group/$groupld’,
profilePicture,

)i

Group group = Group(
senderId: auth.currentUser!.uid,
name: name,
groupld: groupId,
lastMessage: '’

r
groupPicture: profileUrl,
membersUid: [auth.currentUser!.uid, ...userlIds],
timeSent: DateTime.now(),
)i
await
firestore.collection('groups').doc(groupId).set(group.toMap());

} on Exception catch (&) {
showSnackBar (context: context, content: e.toString());

}

}

Figure 32 — Code snippet of the GroupRepository class, responsible for interacting with the database to store
new group information.

The method getChatGroups was added to the ChatRepository class to fetch the chat
group conversation stream from the database. This stream of conversations is displayed on the

Ul via the ConversationsScreen.

59

Finally, the methods sendTextMessage and sendGifMessage of the ChatRepository
class were updated to verify if the message’s receiver is a group and update the database

accordingly.

5.2.10.3 Challenges

The primary challenge of this sprint was to plan the adaptation of the database structure
to include groups. Additionally, various points of the Ul related to the ChatScreen and
ConversationsScreen had to be adapted to include different layouts for 1-2-1 chats or group

chats.

5.2.11 Sprint 10: Implement library and player Ul

5.2.11.1 Objectives

e Implement the user interface of the library screen where users can see all audio
stories shared.

e Implement player user interface.

5.2.11.2 Implementation highlights

A considerable amount of time was dedicated to designing and implementing the UI of
the library screen and the player screen, as those would be the main screens for typical app
users.

To give a feel of an actual story library, images to represent covers of the stories shared
were included in the layout (Figure 33). The pictures used in this project were downloaded

from Canva (Canva), and the idea is to add a library of custom artwork for story covers to the

app.

60

WEST SELLING BOOK OF TE YEAR

FEELING ALONE
LOVE IN THE DESERT

STORY

B Trs

Figure 33 — Example of the story covers available in the app.

The audio stories’ information was hard-coded, and the covers were added as constant
project assets to implement the first version of the library screen UL In future sprints, the library
screen would be linked to the database, and the covers would be hosted online being displayed
via cached network image components.

The dynamic elements of the player screen Ul were also hard-coded in the first iteration.

For example, the names of the story and the author were added as constant Strings.

5.2.11.3 Challenges

The primary challenge of this stage was to incorporate responsiveness to Ul to different
device screen sizes. The Flutter framework offers many components to build lists dynamically
and add responsiveness to components. However, the interaction between “flexible”

components and lists is not very easy to implement for more complex Ul designs.

61

5.2.12 Sprint 11: Implement listening to playlist, seeking a position in the audio, skipping
audios, repeating and shuffling the playlist

5.2.12.1 Objectives
e Implement the possibility of listening to a list of audios hosted online in sequence.
¢ Improve the player to allow seeking a specific position in a track being listened to.

¢ Implement jumping between tracks within the playlist.

Implement setting one specific audio to repeat.

Implement setting the entire playlist to repeat.

Implement listening to the playlist in random order.

Implement the possibility to speed up or slow down the player.

5.2.12.2 Implementation highlights

The external package just_audio was used to play audio from a URL, and the class
PlayerController was developed to manage the player. Notifiers were created to notify the Ul
about the player and playlist’s states.

Web-hosted audio example files (SoundHelix web audio examples) were used at this

implementation stage to test the player and playlist functionalities developed.

5.2.12.3 Challenges

The tutorial from Suragch (2021) was instrumental as a reference in implementing the
functionalities listed in this sprint. The biggest challenge was to consider the tutorial guidance
while maintaining consistency with the MVC and design patterns implemented throughout

other parts of the project.

5.2.13 Sprint 12: Implement listening to a playlist with a locked screen

5.2.13.1 Objective

¢ Implement listening to the playlist with the device screen locked or while using another

app simultaneously with the audio in the background.

62

5.2.13.2 Implementation highlights

The external package audio_service was used to play audio in the background and control
the player using the device OS interface.

The class StandardAudioHandler was implemented to manage the interaction between
the app’s player and the device’s OS. The external package audio_session was also used to
configure the interaction of the app’s audio features and the audio from other apps installed on
the device that might be used simultaneously. This package allows an audio session to specify

which audio output should be prioritized depending on the situation.

5.2.13.3 Challenges

A second tutorial from Suragch (2021) was also instrumental as a reference in
implementing the functionalities listed in this sprint. Similar to what happened during the
previous sprint, the biggest challenge was to consider the tutorial guidance while maintaining
consistency with the MVC and design patterns implemented throughout other parts of the
project.

Due to the interaction of functionalities implemented in this sprint with the device OS, a
bug was preventing audios from playing. The solution was to uninstall the app from the

Android device emulator and reinstall it without any changes to the code.

5.2.14 Sprint 13: Implement fetching audios from Firebase and marking audio as

favorite

5.2.14.1 Objectives

¢ Implement fetching audios associated with a user from the database.

e Implement a button to mark audio stories as favorites.

5.2.14.2 Implementation highlights

The class AudioRepository was implemented to manage the interaction with the database.
Figure 34 shows the method getAudioMessagesStream used to get the stream of audios from
Firebase and the fetchPlaylist used by the PlayerController class to load the available audios

in the user’s library into the player’s playlist.

63

import...

AudioRepository
PlaylistRepository

class AudioRepository extends PlaylistRepository {
AudioRepository({
required this.auth,
required this.firestore,
by
final FirebaseRuth auth;
final FirebaseFirestore firestore;

[[AudioMetadata
@override
Stream<List<AudiocMetadata>> getAudioMessagesStream() {
return firestore
.collection('users")
.doc(auth.currentUser! . uid)
.collection('audios')
.orderBy ('timeSent', descending: true)

.snapshots ()
.map ((event) {
List<hudicMetadata> audios = [];
s) |

for (var document in ewvent.docs
lioMetadata. fromMap (document.data());

var audio = Audi
audios.add (audio) ;
return audios;

by

doverride

Future<List<AudioMetadata>> fetchPlaylist() async (
List<AudioMetadata> playlist = await

getAudioMessagesStream() . first;

return playlist.toList():;

}

}

Figure 34 — Code snippet of the AudioRepository class that manages the interaction with the audio database.

The AudioRepository class also contains the method toggleAudioMessageFavorite,
which is used to toggle the field isFavorite of audio stories. Additionally, the same class
contains the method setAudioMessageSeen, which is analogous to the method used to

implement the “is seen” functionality for chat messages.

64

5.2.14.3 Challenges

The implementation of the functionalities during this sprint was very similar to the app’s

messaging feature, so it went smoothly.

5.2.15 Sprint 14: Improve audio recorder, record preview, the addition of metadata and

sending it to other users

5.2.15.1 Objectives

¢ Improve audio recorder Ul.

e Improve audio recording and recording preview.

Implement the possibility of adding metadata information to the audio recorded,

including the author’s name, the title and an artwork cover.

Implement the possibility of selecting users to receive the audio story.

5.2.15.2 Implementation highlights

The RecorderController class was created to intermediate the interaction between the
recorder external package (flutter_sound) and the UL This class also contains a simple player
to preview the audio recorded before sharing it.

The external package audio_session was also used to configure the interaction of the
recorder and simple player with the device's OS. The audio session configured in the
RecorderController need to be different from the one configured in the PlayerController class
for better audio quality.

The AudioMetadata class is used to model audio stories in the program (Figure 35). The
description of the fields of this class can be seen in Table 7. The class AuthorTitleCoverScreen

provides the Ul for adding metadata data information to the audio recording before sharing it.

65

AudioMetadata

+id: String

+ author:String

+ title:String

+ artUrl:String

+ url:5tring

+ isFavorite:Boolean
+ isSeen:Boolean

+ senderld: String

+ timeSent:DateTime

+ toMap():Map<String, dynamic>
+ fromMap(Map<String, dynamic> map):AudioMetadata
+ copyWith(String? id,

String? author,

String? title,

String? artUrl,

String? url,

bool? isFavotite,

bool? isSeen,

String? senderld,

DateTime? timeSent): AudioMetadata

Figure 35 — AudioMetadata class.

Selecting users and sending the audio was implemented following the same logic used
to select users and send chat messages. The method sendAudioMessage was included in the

ChatRepository class for this purpose.

5.2.15.3 Challenges

The biggest challenge during this sprint was understanding the technical documentation
of the flutter_sound package to configure the audio recording parameters correctly and debug
the application.

In some cases, while testing the app in an Android device emulator, the recorder did
not record the last second of the voice. [believe that happened because of the poor performance
of my computer while running the emulator. I did not notice the same bug while testing the app
on a physical device. Still, to mitigate the possibility of missing the last second of the audio
recorded, | implemented an artificial delay between the moment the button to stop the recorder

is tapped and the moment the function to stop the recorder is called (Figure 36).

66

vold stopRecorder () async |

await

delaved (const Duration(seconds: 1));
await recorder!.stopRecorder();
recordButtonNotifier.value = RecorderStateEnum.recorded;

Figure 36 — Code snippet of the method to stop the recorder from the RecorderController class. An artificial
delay was added to ensure the last second of the voice was captured before stopping the recorder.

5.2.16 Summary of the external libraries used

The app’s dependencies are listed below:

Sfluitter_sound is used for recording and previewing recorded audio.
permission_handler is used for requesting android permissions and checking their
status.

path_provider is used for getting the application’s current directory and saving
local files.

infl is used to format the string shown on the recorder’s timer.

Just_audio is used to play audio.

audio_session is used to configure the interaction of the audio features of the
cellphone’s OS.

Jirebase_core is necessary for using the other Firebase services.

Jfirebase_auth is used for authenticating users.

Jfirebase_storage is used for storing files in the app’s database.

cloud_firestore is the NoSQL document database to store, sync, and query the app’s
data.

animated_text_kit is used for animating the text on the landing page.
Sflutter_progress_hud is used to show a spinner while the authentication process is
ongoing during sign-up and login.

image_picker is used to pick images from the cellphone gallery.

[flutter_riverpod is used to implement the provider design pattern to share the
application state across different parts.

email_validator is used to validate the email typed by the user before signing up.

[flutter_contacts is used to access the cellphone’s contacts.

67

uuid is used to generate unique ids for different elements (messages, audios and
groups).

cached_network_image is used to display cached images from URLs.
enough_giphy_flutter is used to pick GIFs from Giphy.

swipe_to is used to implement the possibility of swiping a message bubble in the
chat to reply to it.

emoji_picker_flutter is used to pick emojis.

audio_video_progress_bar is used to display the total duration and progress of the
audio player.

audio_service is used to play audio in the background and control the player using
the Android interface.

equatable is used to compare instances of the same class during unit tests.

68

6 TESTING AND EVALUATION

This report chapter discusses aspects related to testing and evaluating the application

developed.

6.1 Testing

The following subsections present:

The types of tests available in the Flutter framework.
The external libraries that were used for testing the app.
The approach adopted to test the application developed.

The testing results.

6.1.1 Types of tests available in the Flutter framework

Automated testing in Flutter is divided into three categories. The following descriptions

were composed based on the article Testing Flutter apps (Testing Flutter apps):

Unit tests: They test a single function, method, or class. The goal of a unit test is
to verity the correctness of a unit of logic under a variety of conditions. External
dependencies of the unit under test are generally mocked out. Unit tests generally
do not read from or write to disk, render to screen, or receive user actions from
outside the process running the test.

Widget or component tests: They test a single widget (Ul component). A widget
test aims to verify that the widget’s Ul looks and interacts as expected. Testing a
widget involves multiple classes and requires a test environment that provides the
appropriate widget lifecycle context.

Integration tests: They test acomplete app or a large part of an app. An integration
test aims to verify that all the widgets and services being tested work together as
expected. Furthermore, integration tests can be used to verify the app’s

performance.

Table 11 shows the trade-offs between different kinds of tests:

69

Table 11 — Tests trade-off. Source: Testing Flutter apps (Testing Flutter apps)

Attribute Unit Widget (Component) Integration
Confidence Low Higher Highest
Maintenance cost Low Higher Highest
Dependencies Few More Most
Execution speed Quick Quick Slow

6.1.2 Summary of external libraries used for testing

The external packages used for automated testing are listed below:
e fest is the flutter package for unit testing.
* mockito is a package for mocking class dependencies.
e build_runner is used the generate the mocked classes files market with mockito
annotations.
e rxdart is used to create a StreamController to mock the FirebaseAuth response.
o fake_cloud_firestore is used to mock a FirebaseFirestore response in tests.
e firebase_auth_mocks is used to mock a FirebaseAuth response in tests.

e firebase_storage_mocks is used to mock a FirebaseStorage response in tests.

6.1.3 The approach adopted to test the application developed

The following testing approach was adopted in this project:
e All model classes were subjected to unit testing.
e Classes and respective methods related to user authentication were subjected to
both unit and component testing.
e The welcome, error and loading pages were subjected to component testing.
e Manual user acceptance testing was carried out based on a pre-determined set of
scenarios and expected results.
Time limitations did not allow for developing automated testing for all components or
implementing automated integration testing. Still, the entire user interface and functional

requirements were covered by manual user acceptance testing.

6.1.4 Test results

Appendix 9.3 contains the test plan adopted with the recorded tests performed and to be
developed in future iterations.

Appendix 9.4 presents the entire script of manual user acceptance test scenarios and their

results.

70

Appendix 9.5 contains screens shots showing evidence of the results of the automated

tests implemented.

6.1.5 Automated tests implementation highlights

This section aims to provide examples of the unit and components tests implemented.

The complete set of tests can be found in the test folder in the project package available on the

GitHub repository.

6.1.5.1 Unit tests

Figure 37 shows a code snippet of a unit test implemented for the method toMap of the

AudioMetadata class. A total of three unit tests were implemented for this class.

import 'package:bbk final ana/models/audio metadata.dart’';
import 'package:test/test.dart';

void main() {
group ('Testing AudioMetadata class', () {
test ('Testing toMap', () {
final map = <String, dynamic>{
'id': '1’',
'author': '"name',
'title': 'nice',
'artUrl': 'http://1',
'url': 'http://2',
'senderId': '1',
'timeSent': DateTime (1994).millisecondsSinceEpoch,
vorite': false,
false,

bi
final audioMetadata = ARudioMetadata(
id: map['id'],
author: map['author'],
title: map['title'],
artUrl: map(['artUrl'],
url: map['url'],
senderId: map['senderId'],
timeSent:

DateTime.fromMilli:

isFavorite: map|
isSeen: map['isSeen'],
)i
expect (audioMetadata.toMap(), map);
b

P

Figure 37 — Code snippet of one unit test implemented for the AudioMetadata class.

71

6.1.5.2 Component tests

Figure 38 shows the one component test example for the AuthRespository class when a
user's login should fail, and an error message is displayed. Note that the dependencies of
AuthRepository class on the FirebaseAuth and the FirebaseFirestore classes had to be mocked.

Mocked dependencies mimic the behavior of the existing class’s dependencies. Instances
of mocked classes can be injected into the classes being tested. The need for mocking

dependencies is described in the Flutter documentation (Mock dependencies using Mockito).

72

import...

fGenerateMocks ([Firebasehuth, FirebaseFirestore, User,
UserCredentiall])

main () |

group ('RuthRepository unit tests', () {

testWidgets (

'Testing signInWithEmail. Log in fails with incorrect
jord. ',
(tester) async |
final auth = MockFir
final firestore = Fake store () ;
final authRepository = R itory(

auth: auth,
firestore: firestore,

)i

when (auth.signInWithEmailAndPassword(
email: 'analfemail.com', password: '123'}))
.thenThrow (Exception ('**wrong—-password**'));

awailt tester.pumpWidget (const M:
home: S
body:

final BuildContext context =
tester.element (find.byType (SizedBox)) ;

bool loggedIn =
await authRepository.signInWithEmail (context,
'ana@email.com', '123");
awalt tester.pumpAndSettle(const Duration(seconds: 1));
expect (loggedIn, false);

expect (find.text (Ex ion{'**wrong-pas) .toString()),

findsOneWidget) ;
bz

Figure 38 — Code snippet of one component test implemented for the AuthRepository class.

73

6.2 Evaluation

This section is dedicated to the project evaluation, and it is divided into three parts:

Critical evaluation, lessons learnt and future developments.

6.2.1 Critical evaluation

The process of writing this dissertation was quite challenging. There was little time to
develop,document, and write an academic report covering all the application steps. There were
months dedicated solely to this project.

However, the baggage and experience acquired on this journey are immeasurable. There
are many steps to building a software application. First, deciding which problem would be
tackled and going through academic research on the topic. Second, planning the product's
development and choosing the language and tools. Third, designing the software architecture
and considering the user experience. Finally, writing the code and being able to see the idea
working. All this knowledge and learning will undoubtedly contribute to my future journey
professionally and personally.

That is because developing software goes far beyond just knowing how to write code and
do research on Stack Overflow. It is necessary to understand what is possible to accomplish. It
is imperative to know how to manage time. It is vital to have a mindset that sees challenges as
opportunities for growth, not obstacles. It is crucial to recognize that one person does not know
everything. It is required to know that bugs will always happen. It is also imperative to know
that they will be resolved. It is necessary to know that other bugs will then arise. Finally, it is
essential to understand how to deal with the challenges that the journey of creating a program

entails.

6.2.1.1 Achievements

In the first place, considering the interface, it is simple and intuitive. Besides that, it is
also inviting and ludic. In addition, the design is well done because a good user experience was
the primary goal. An example is that the user can see a difference between the stories already
listened to and the new ones because these appear with the tag "new". Another example is the
user manual, which is simple, direct, and pleasant.

In the second place, taking the code into account, everything that was implemented is

working. SOLID principles were respected, and dependency injection was used, both

74

responsible for a more maintainable code. And specific packages were used for each function,
avoiding thus redoing work and enabling to save time.

In the third place, concerning tests, extensive manual integration tests were performed.
Also, unit tests were implemented for the main classes, and all the code has been extensively
debugged.

For clarification, one may ask about the purpose of a chat in an application designed
mainly for people without digital literacy. Still, considering there may be more resourceful
users, the chat provides another form of exchange for these. The advantage of this over using
an external application, such as WhatsApp, is because it is an environment directed just for

that, while in WhatsApp, the possibility of distraction with other subjects is greater.
6.2.1.2 Drawbacks

The challenges related to each specific sprint were described previously in this report.
Additionally, because of time-consuming activities, | ran out of time for doing tests with real

users, which is a significant loss. This is the main drawback of the project.
6.2.1.3 Lessons learnt

More experience was gained with the provider pattern throughout the development. It
was initially decided to use the Riverpod package. However, this package adds complexity to
the code, and a different strategy for the application's state management would probably be
adopted. The approach detailed in the article "Flutter state management for minimalists"
(Flutter state management for minimalists) would be a more suitable solution.

Another lesson learnt was that uncertainty forced the adoption of a strategy of putting all
the efforts into development first, stopping to document the code later. This decision resulted
in a less efficient process for managing the project. One example of an unpredictable situation
that led to this decision was that, in one moment, the code logic was correct, but the application
was not working as expected. After much effort, it was discovered that it was necessary to
uninstall and reinstall the application on the cell phone using Android. Once that was done, the
software worked.

Something similar happened related to the tests. An agile implementation methodology
was adopted, and discoveries were made throughout the project about how different parts
should be implemented. Because of that, it was decided to start implementing the main code

and then develop the tests. However, suppose I had more experience and clarity regarding

75

implementing the parts to meet the functional requirements. In that case, a test-driven

development could have been an option resulting in higher testing coverage.

6.2.2 Possible further developments and improvements

For the tests, it would be good to extend the coverage of unit tests; implement automatic
integration tests, and extend the coverage of unit testing mainly to classes where there are
dependencies. The implementation of automated tests can be an improvement. However,
depending on user feedback, more radical changes may be necessary for developing the
software as a product. This could lead to the need to change the integration tests, which would
slow down the development process. In addition, it would be essential to experiment with real
users and map how they react to and interact with the app, and through that feedback, improve
the app.

Besides, it would be nice to manage the necessary permissions so that the code also runs
on iOS. This was not done because it was estimated that it would add 10% more time to the
process, equating to one to two more weeks of work. As the deadline for delivery was short,
the option of not running the risk of delay was taken. In this regard, the preference given to
Android is due to its better adaptation to the application personas and broader representation
in the global market.

For the notifications, it would be nice to receive notifications on Android and chat and
know the number of unread messages. The goal would be to improve user interaction and
engagement. In addition, on the library screen, it would be nice to see the notification of new
messages. For the chat, it would be nice to be able to click on the user's photo and enlarge it
and also get to see all members of a group.

It is imperative to have a "forgot your password" functionality. Another improvement
would be to better master the recording package to improve audio quality, with less noise and
more intensity.

For both users, the one who records and the one who listens, it would be good to have a
search option for stories and messages. In addition, allowing login using a phone number
instead of email and creating invite functionality for new users would be good.

For the listener, it would be nice to be able to download the audio for offline listening.
In addition, it would be nice to be able to organize the playlist in a selected order (for now, it

is only possible to listen to the playlist in chronological or random order).

76

For the recorder, it would be nice if the user could: seek a specific position of the audio
while previewing it; edit the audio recorded; create chapter tags for the audio and save it as a
draft. Besides, it would be nice to share the audio more than once. It would also be good to
have the story’s text on the screen while speaking and have a more extensive artwork cover

database. In addition, putting the story’s title on the cover would be good.

7

7 CONCLUSIONS

In summary, the project's achievements were delivering a good user experience, with a
straightforward user journey, software that works and an uncomplicated and pleasant interface.
Besides that, code-wise, the implementation works and best practices were used, for example,
following SOLID principles and using dependency injection. In addition, concerning tests, the
code was broadly debugged and manually tested. The two main lessons learnt were that it is
more efficient to document the code while developing and that a test-driven development
would probably result in more substantial testing coverage. Respecting what could be
improved, many advances could be made. Still, the main ones are testing the application with
real users to get feedback for improvements and to log in with a phone number instead of email
because that makes the sign-up process less demanding for users that do not have digital

literacy.

78

8§ REFERENCES

Audio Stories Sharing App Sabia - Manual.
https://www.youtube.com/watch?v=_As mIl1PQOnBs. 10/09/22,11:41.

BUSCHMANN, Frank et al. Pattern-Oriented Software Architecture, Volume 1, A
System of Patterns. New York: John Wiley & Sons, 1996.

Canva. https://www.canva.com/about/. 02/09/22, 14:00.

CASTRO, Ana Luiza Silva de. Audio exchange application to tackle loneliness of older adults.
— London: Birkbeck University/ Department of Computer Science and Information Systems,
2022.

Cloud Firebase Storage. htips://firebase google.com/docs/storage. 10/09/22, 15:55.

Cloud Firestore. https://firebase.coogle.com/docs/firestore. 10/09/22, 15:30.

Curves class. https://api.flutter.dev/flutter/animation/Curves-class.html. 10/09/22, 10:35.

Figma. https://www figma.com/about/. 06/07/22, 11:00.

Firebase Authentication. https:/firebase.coogle.com/docs/auth. 11/09/22, 12:20.

Flutter architectural overview. https:/docs.flutter.dev/resources/architectural-overview.
08/09/22, 15:00.

Flutter state management for minimalists. https://suragch.medium.com/flutter-state-
management-for-minimalists-4¢71a2f2f0c 1. 12/09/22, 13:47.

Giphy. https://developers.giphy.com/. 10/09/22, 14:30.

How to Install and Setup Flutter for App Development on Windows.
https://www.youtube.com/watch?v=/2uenpCQuyw. 08/09/22, 08:52.

KALBAG, Laura. Accessibility for everyone. New York: A Book Apart, 2017.

Mock dependencies using Mockito. 13/09/22, 18:00.

NAEIM, Mahdi; REZAEISHARIF, Ali; KAMRAN, Aziz. COVID-19 has made the elderly
lonelier. Dementia and Geriatric Cognitive Disorders Extra, v. 11, n. 1, 2021, (p. 26-28).
Available in: <https://www karger.com/Article/FullText/514181>. Access in: 03/03/22.

Observer Design Pattern. https://docs.microsoft.com/en-us/dotnet/standard/events/observer-
design-pattern. 09/09/22, 17:52.

Package layout conventions. https://dart.dev/tools/pub/package-layout. 09/09/22, 16:55.

Riverpod 1.0.3+1. https://pub.dev/packages/riverpod. 11/09/22, 13:50.

79

SoundHelix web audio examples. https:/www.soundhelix .com/audio-examples. 18/09/2022,
22:14.

SURAGCH. Background audio in Flutter with Audio Service and Just Audio. Article available
on: https://suragch.medium.com/background- audio-in-flutter-with-audio-service-and-just-
audio-3cce17b4a7d. Last access: 18/09/2022.

SURAGCH. Managing playlists in Flutter with Just Audio. Article available on:
https://suragch.medium.com/managing-playlists-in-flutter-with-just-audio-c4b8f2af 1 2eb. Last
access: 18/09/2022.

Testing Flutter Apps. https://docs flutter.dev/testing. 13/09/22, 15:11.

The Principles of OOD. http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.
11/09/22, 13:43.

WALTER, Aarron. Designing for emotion. New York: A book apart, 2011.

Widgets Binding Observer class.
https://apiflutter.dev/flutter/ widgets/WidgetsBindingObserver-class.html. 08/09/22, 15:55.

Windows install. https://docs.flutter.dev/eet-started/install/windows. 10/09/22, 16:05.

Write your first Flutter app. https://docs.tlutter.dev/get-
started/testdriveMtab=androidstudio#create-app. 09/09/22, 15:00.
YU, Angela. The Complete Flutter Development Bootcamp with Dart. 2021.

80

9 APPENDIX

9.1 Requirements lists

9.1.1 Non-functional requirements full list

Table 12 — Non-functional requirements full list.

Requirement ID

Requirement Statement

Category
(Must-have
/ Nice-to-have)

Evaluation

The app, the documentation and

NFRO1 The time requirement was completed with
Time the report shall be ready by Must success 4 P
19/09/22. '
User interface: shall be user- The usability requirement was completed
NFRO02 friendly. Users shall be able to Must with partial success. Someone with relative
Usability navigate the app without ’ technological know-how may be needed to
external help. assist the elderly during the set-up process.
NFRO3 - Login; The security requirement was completed
: Must .
Security - Password. with success.
NFRO4 - System documentation; Must The documentation requirement was
Documentation | - Training material (manual). ’ completed with success.

81

9.1.2 Functional requirements full list

Table 13 — Functional requirements full list.

Requirement 1D

Requirement Statement

Category
(Must-have /
Nice-to-have)

Evaluation

Requirement completed with

button.

FRO1 The app shall have a set-up page. Must SUCCESS.
FRO1 —a The set-u‘p page shall contain a field for the Must Requirement completed with
user email. SUCCESS.
FRO1 —b The set-up page shall contain a field for the Must Requirement completed with
user password. SUCCESS.
FRO1 — ¢ The set-up page shall contain a "Sign up Must Requirement completed with
button. suCCess.
FRO1 —d "I'hc set-up page shall have user input for the Must Requirement completed with
image and the user name. success.
The app shall have a page for the user to . . r
FRO2 choose between listening to a story or Must Requirement completed with
- SUCCess.
recording a story.
FRO3 The app 51‘1:111 have a page — Library - for the Must Requirement completed with
user listening to a story. SUCCEess.
FRO3 - 2 The most recent stories shall be on the top of Nice Requirement completed with
the page. SUCCess.
FRO3 - b The user shall be able to categorize a story as Nice Requirement completed with
favorite. SUCCESS.
FRO3 - ¢ The user‘shelll be able to click on a story and Must Requirement completed with
listen to it. SUCCEess.
FRO4 The app shall have a story player page. Must L5 b i el
SUCCESS.
FRO4 2 The story player page shall have a play/pause Must Requirement completed with
button. SUCCEss.
FRO4 b The f_itory player page shall have the next and Must Requirement completed with
previous buttons. SUCCESS.
FRO4 — ¢ The story player page shall have a repeat Nice Requirement completed with
button. SUCCESS.
FRO4 —d The story player page shall enable the user to Nice Requirement completed with
repeat the story. SUCCEess,
FRO4 — ¢ The story plelye}' page shall enable the user to Nice Requirement completed with
repeat the playlist. SUCCESS.
FRO4— f The story player page shall have a shuffle Nice Requirement completed with

SUCCESS.

82

Requirement completed with

FRO4 — g The story player page shall have a seek bar. Must
success.
FRO4 —h The story player page shall have a velocity Must Requirement completed with
button. success.
FRO4 — i The story player page Shil]l.Cl]ilhlc the user to Nice Requirement completed with
block the screen and keep listening to a story. success.
FRO4 — j Thc‘ story playcr‘pagc shall cnablc the user to Nice Requirement completed with
navigate the stories on the playlist. success.
FRO4 — k The story plelg,fer page shall enable the user to Nice Requirement completed with
use the android menu to control the player. success.
FROS5 The app shall have a recording page. Must o T g] 2
success.
FROS — 2 The recording page shall have a recorder Must Requirement completed with
button. SUCCess.
FROS —b 'l:he recording page shall enable the user to Must Requirement completed with
listen to the record. SUCCESS.
FRO5 — ¢ The recording page shall have a refresh Must Requirement completed with
button. SUCCESS.
FRO5 —-d The recording page shall have a done button. Must g b i)
SUCCESS.
FRO6 The elllpp shall have an "About your story Must Requirement completed with
page". SuCcess.
The about your story page shall have a field ‘ ¢
FRO6 —a for the story's title name and one for the Must Requirement completed with
] SUCCESS.
author's name.
FRO6 —b The about your story page shall enable the Maust Requirement completed with
user to select a cover for the story. SUCCess.
FRO7 The app shall have a "Send a story to" page. Must ST I O]
success.
The "Send a story to" page shall enable the . . e
FRO7 —a sender user to select one or more receiver Must Requirement completed with
success.
users.
FRO7 —b The "Send a story to" page shall have a send Must Requirement completed with
button. SUCCESS.
FRO8 The app shall have a navigation menu. Must Requirement completed with
success.
FRO8 _ a The nav1gat‘10n menu shall enable the user to Must Requirement completed with
access the library. SUCCESS.
FROS —b The navigation menu shall enable the user to Must Requirement completed with
record a story. SuCcess.
FROS — ¢ The navigation menu shall enable the user to Must Requirement completed with

access the chat.

SUCCCSS.

83

The navigation menu shall enable the user to

Requirement completed with

FRO8 —d)) Must
create a group. SUCCESS.
FROS — ¢ The navigation menu shall enable the user to Must Requirement completed with
access the profile. SuCCess.
FROS — f The navigation menu shall enable the user to Must Requirement completed with
log out. SUCCess.
FR0O9 The app shall have a chat page. Nice Requirement complcted with
SUCCEsS.
FRO9 — 2 The chat page shall enable the users to send Nice Requirement completed with
messages. SUCCess.
The chat page shall enable the users to select ‘ Requirement completed with
FRO9Y —b anew message button or an existing Nice
; SUCCESS.
conversation.
FRO9 — ¢ The chat page shall enable the users to send a Must Requirement completed with
text. SUCCCSS.
FRO9 d The fhat page shall enable the users to send Nice Requirement completed with
emojis and GIFs. SUCCESS.
FRO9 — ¢ The chat page shall have a group chat page. Nice Requirement completed with
SUCCEss.
FRO9 _ f The group chat page shall enable the user to Nice Requirement completed with
create groups of contacts. SUCCESS,
FRO9 — f)a The group chelt_ pflge shj(lll enable the user to Nice Requirement completed with
select a photo for the group. suCCess.
FRO9 —) b The group chat page shall enable the user to Nice Requirement completed with
select a name for the group. SUCCESS.
FRO9 —) ¢ The group chat page shall display the group Nice Requirement completed with
created. SUCCESS.
FRO9 -) d The group chat"pagc shall enable the user to Nice Requirement completed with
send text, emojis and GIFs. SUCCEsSs.
FR10 The app shall have a user profile page. Must Requirement completed with
SUCCess.
FRI0—a The user profile page shall enable the user to Must Requirement completed with
change the photo and the name. success.
FRI11 The app shall have authentication Nice Requirement completed with
persistence. SUCCEss.
Error case: the user email input is not
registered.
FR12 The field for email input should become red, Nice Requirement completed with

and an error message should be displayed at
the base of the field with the content: "There
is no account with this email".

SUCCCSS.

84

Error case: the user email input is not valid.
The field for email input should become red,

Requirement completed with

FR13 and an error message should be displayed at Nice success
the base of the field with the content: "Insert ’ o
a valid email address".
Error case: the password is incorrect.
FR14 The password field turns red, and an error Nice Requirement completed with

message appears at the base of the field with
the content: "Incorrect password".

SUCCESS.

85

9.2 User Manual

This section describes the user manual, which can also be seen as a video at Audio

Stories Sharing App Sabid — Manual.

Figure 39— First page.

Scbic is an Android app to share short
audio stories with your beloved ones.

stories_

Figure 40 — Contextualization.

86

<« 8 N ® B - %
gwer tyuiop

asdfghijk.]

Hzxevbam@E@

Set up

1. Download the app on PlayStore.

2. Openthe app.

3. Create an account with email and password.
4. Add a profile picture and your name.

Thate it/

Figure 41 — Set up.

Chaesse between

1. Listento astory shared with you.

2. Record astory full of love.

B

Figure 42 — Choosing an option.

87

B @ 00 ¥l
€ L) =

Recently shared with. you

Feeling alone in the
W eser

HE BO® -]

£ o

BE GOME

Listening to a story

1. Storieswill be organized in the library.

2. The five most recent stories will be on the

3. Below, each tab shows:

4,

a. Allstories shared with you.
b. Your favorites.

c. The stories you recorded.

top.

P

N

Tap onastorytolistentoit.

Figure 43 — Listening to a story.

Stery player a1
1
2

Tap the play button to play or stop the story.

The next and previous buttons allow you to
jump between stories on your playlist.

Tap the repeat button once to set the
current story to repeat.

Tap it twice to set the entire playlist to
repeat.

Tap it again to disable the repeat mode.

Tap the shuffle button to listen to the playlist
inarandom order.

Figure 44 — Story player (1/2).

88

Change playback speed

Stery player o

1.

The seek bar allows you to navigate the
story.

You can slow down or speed up the player.
Navigate between stories on your playlist.

Feel free to block your screen while listening
to astory.

a. The player will not stop.

b. You can use your Android menu to
control the player.

Figure 45 — Story player (2/2).

Recording a story

Tap the recorder button once to start
recording.

Tap it again to finish.

You can listen to your record by tapping the
play button that showed up.

Tap the refresh button to record again.
Tap the done button to proceed.

Figure 46 — Recording a story.

89

About your story

Stovys titl - 1‘1/ T ’
1. Add the story’s title and the author's name.
e 2 2. Select a beautiful cover for it.

B L & o Oy e

gwertyuiop

asdfoghijk.|
S zxcvbam@
nma , @

Figure 47 — About the story.

Sharing your story -
gy 1. Select one or more contacts to share your
story.
Q \‘ il M
P Y- 2. Inorder to show up in the list the contact
must;
, a. Beregisteredinthe app.
Y he
3;[;1‘ b. Beregistered in your mobile contacts
o with the same email used to register in
the app.
3. Tapthe send button.
Thats i/

Figure 48 — Sharing the story.

90

Navigate the app
1. Tap the top-right icon to open the navigation
menu.

2. Navigate between screens by tapping on

Figure 49 — Navigate the app.

Chat

o 1. You cansend messages to your contacts.

i 2. Inthe chat screen tap the new message
button or select an existing conversation.

You can send text, emojis and GIFs &

4. Remember that, in order to show up inthe
list, the contact must:

> a. Beregistered in the app.

b. Beregistered in your mobile contacts
with the same email used to register in
the app.

Figure 50— Chat.

01

Group chat
1. You cancreate groups of selected contacts
to exchange messages.

2. The created group will appear on the chat
screen.

3. Youcan send text, emojis and GIFs to your
groups.

Figure 51 — Group chat.

User prsfile

1. You can manage your profile.
2. Change your name or picture at any time.

Figure 52 — User profile.

92

1. The authenticated state persists, so you will

not need to log in every time you close and
open your app.

2. Tologout, tap the option on the drawer
menu.

Figure 53 — Authentication persistence.

stories love

Sabid

4

Figure 54 — End page.

93

TheS

most b

a national symbol in Brazil that inspired one of the

autiful poems about

Figure 55 — Inspiration.

stance from home and family.

94

93 Test plan

Table 14 — Test plan. Part I out of 5.

. . Manual
Feature Path File Unit test Component test integration test
audio | audio/controller audio_handler dart
O todo Q NaA Done
player_controller.dart
O todo O NA Done
recorded_audio_handler dart
O todo Q N/A Done
recorder_controller.dart
O todo Q NaA Done
audio/enums library_filters_enum.dart
© N/A O NA Done
player_state_enum.dart
© N/A O NA Done
recorder_state_enum .dart
© N/A O NA Done
library_filters_enum.dart
Q NA Q NA Done
repeat_button_enum.dart
© N/A O NA Done
audio/notifiers audio_metadata_notifier.dart
© N/A O NA Done
play_button_notifer.dart
O NA Q NA Done
player_progress_notifer dart
© N/A O NA Done
player_progress_state.dart
© N/A O NA Done
recoder_progress_notifier.dart
O NA Q NA Done
record_button_notifier dart
© N/A Q NA Done
recorder_progress_state dart
© NA S N/A Done
repeat_button_notifier dart
© N/A O NA Done
audio/repository playlist_repository dart
D To do D To do Done

95

Table 15 — Test plan. Part 2 out of 5.

. . “ Manual
Feature Path File Unit test Component test integration test
audio | audio/screens author_title_cover_screen.dart
D To do D To do Done
initial_decision_screen.dart
O todo O 1o do Done
library_screen.dart
n To do D To do Done
player_screen.dart
n To do n To do Done
recorder_screen.dart
D To do D To do Done
send_to_screen dart
O todo O 1o do Done
audio/widgets audio_control_buttons dart
S N/A D To do Done
audio_progress_bar dart
© N/A D To do Done
current_audio_artwork.dart
Q N/A O 1o do Done
current_aundio_author.dart
© N/A D To do Done
current_audio_title dart
© N/A n To do Done
done_recording_button.dart
© N/A D To do Done
list_header dart
© N/A O 1o do Done
next_audio_button.dart
© N/A n To do Done
play_button dart
© N/A D To do Done
player_botton_bar dart
© N/A O 1o do Done
player_speed_list.dart
S N/A D To do Done
playlist dart
© N/A n To do Done
pevious_audio_button.dart
© N/A D To do Done
recorder_button dart
© N/A D To do Done

96

Table 16 — Test plan. Part 3 out of 5.

. . “ Manual
Feature Path File Unit test Component test integration test
audio audio/widgets recorder_secondary_buttons_bar dart
© N/A D To do Done
recoder_timer .dart
Q N/A O 1o do Done
recorder_ui.dart
© N/A D To do Done
repeat_button.dart
© N/A n To do Done
restart_recording_button.dart
© N/A D To do Done
shuffle_button dart
© N/A O 1o do Done
auth auth/controller auth_controller dart
Done Done Done
auth/repository auth_repository dart
Done Done Done
auth/screens edit_user_info_screen.dart
Q N/A O 1o do Done
login_screen dart
© N/A Done Done
registration_screen.dart
© N/A Done Done
user_info_screen dart
© N/A D To do Done
common | common/constants constants dart
© N/A Q N/A Done
common/enums message_enum.dart
© N/A Q NA Done
common/providers message_reply_provider.dart
© N/A O NA Done
common/repositories common_firestore_repository.dart
Done Done Done
common/screens error_screen.dart
S N/A Done Done
loader_screen.dart
© N/A Done Done

97

Table 17 — Test plan. Part 4 out of 5.

. . . Manual
Feature Path File Unit test Component test integration test
common | common/widgets circular_cached_nework_image dart
© N/A D To do Done
drawer_menu.dart
© N/A O Todo Done
field_tite dart
O N/A n To do Done
rounded_button_primary.dart
© N/A n To do Done
rounded_button_secondary .dart
Q) N/A D To do Done
screen_basic_structure.dart
© N/A O Todo Done
square_cached_network_image dart
© N/A n To do Done
standard_circular_profile_avatar dart
© N/A D To do Done
standard_circular_progress_indicator.dart
© N/A O Todo Done
landing | landing/screens welcome_screen dart
O N/A Done Done
messaging | messaging/chat/controller | chat_controller dart

n To do

n To do

Done

messaging/chat/repository

chat_repository dart

D To do

D To do

Done

messaging/chat/screens chat_screen.dart
© N/A O Todo Done
messaging/chat/widgets bottom_chat_field.dart
S N/A n To do Done
chat_list.dart
Q) N/A D To do Done
display_text_image_gif.dart
O N/A O Todo Done
message_reply_preview dart
© N/A n To do Done
my_message_card dart
© N/A n To do Done
sender_message_card.dart
® N/A D To do Daone

08

Table 18 — Test plan. Part 5 out of 5.

; s Manual
Feature Path File Unit test Component test integration test
messaging | messaging/conversations/ | conversations_screen.dart
screens & N/A D To do Done
messaging/conversations/ | conversations_list.dart
widgets © N/A O 1o do Done
messaging/ group/ group_controller .dart
controller n Todo n To do Done
messaging/ group/ group_repository.dart
repository n To do n Todo Done
messaging/ group/screen create_group_screen.dart
& N/A D To do Done
messaging/group/widgets | select_user_contact_group.dart
® N/A O 1o do Done
messaging/select_contacts/ | select_contact_controller dart
controller n Todo © N/A Done
messaging/select_contacts/ | select_contact_repository .dart
repository D To do © N/A Done
messaging/select_contacts/ | select_user_contact_screen.dart
screens © N/A O 1o do Done
models | models audio_metadata.dart
Done ® N/A Done
chat_conversation.dart
Done & N/A Done
group.dart
Done & N/A Done
message.dart
Done © N/A Done
user_model.dart
Done © N/A Daone
utils utils utils dart

© N/A

Done

Done

99

94 User acceptance tests

Table 19— User acceptance tests

Test 1D Feature tested Test Scenario Expected result Pass/Fail
. : . User succeeds. The
‘ User signs up with valid :
1 Sign up ; profile screen is Pass
email and password.
shown.
User attempts to sign up User does not
2 Sign up with invalid email and succeed. An error Pass
password. message is displayed.
User attempts to sign up User does not
3 Sign up with an email already succeed. An error Pass
registered in the app. message is displayed.
i . . . User succeeds. The
. User logs in withemail | . ©° L
4 Login = initial decision screen Pass
= and correct password. .
is shown.
User attempts to log in User does not
5 Login with email and incorrect succeed. An error Pass
password. message is displayed.
User tap the "Listento a . .
. i ‘F,;: A The library screen is
6 Listen to a story story" on the initial - Pass
.) displayed.
decision screen.
‘ User has three audios in The library screen
7 Listen to a story : . Pass
the database. displays three audios.
The fill of the heart
. User marks an audio as | icon turns red and the
8 Listen to a story I . Pass
favorite. audio can also be seen
in the favorites tab.
Only audios marked
‘ User taps the favorite tab as favorite are
9 Listen to a story P : : Pass
on the library screen. displayed in the
screen.
All audios received by
10 Listen to a story User IEIPS the all tabon | the user are displayed Pass
the library screen. ordered by the most
recent date.
The audio shows up in
‘ ‘ ‘ the library screen with
11 Listen to a story User receives new audio. : ,,y RO Pass
an icon "new" besides
it.
Only five audio
covers are displayed
12 Listen to a story User receives six audios. | in the "recently shared Pass
with you" section of
the library screen.
The player screen
‘ User taps on a story in the shows up with the
13 Listen to a story P y ; P Pass
library screen. information of the
selected audio.

100

User taps on the play

The audio starts to
play. The play button
becomes a stop
button. The audio

14 Listen to a story button ()f_ the player plays until the end and Pass
screen. .
then the next audio in
the playlist starts to
play.
User taps on the stop The audio stops. The
15 Listen to a story button of the player stop button become a Pass
screen. play button.
User taps on the next The l't'l‘eli(l;]‘ﬂl‘(‘l ()lfhlhe
16 Listen to a story button of the player next aucio n the Pass
) playlist is displayed
screen.
on the screen.
c The metadata of the
User taps on the previous revious audio in the
17 Listen to a story button of the player P g Pass
playlist is displayed
screen.
on the screen.
User isin Fhe first audio Nothing happens. The
.) of the playlist and taps the A
18 Listen to a story - . button is gray and not Pass
previous button of the e
active.
player screen.
User is in Fhe last audio of Nothing happens. The
o . the playlist and taps the 5 "
19 Listen to a story button is gray and not Pass
next button of the player ilr!
— active.
User taps on the "Ix"in | A menu with different
Listen to a story the botton left corner of player speeds is Pass
the player screen. displayed.
Audio is playing and the
20 Listen to a story e A P L Audio is played faster. Pass
speed on the player
screen.
‘ Audio is playing and the Audio is played
21 Listen to a story user selects a lower speed) Pass
slower.
on the player screen.
User taps on the playlist A list with all the
22 Listen to a story button on the player audios in the playlist Pass
screen. is displayed.
User taps on the name of cver cleine
23 Listen to a story a different audio within The player Sklph, © Pass
. the selected audio.
the playlist.
The order of the
audios seing via
User taps the shuffle playlist button
24 Listen to a story button on the player randomly changes. Pass
screen. The audios are played
following the new
sequence.
User slides the seek bar to | The audio position
25 Listen to a story a different position on the | skips to the minute Pass

player screen.

and second shown.

101

User taps once the repeat

The current audio
plays until the end and
then plays again. The

26 Listen to a story button on the player audio repeats until Pass
screen. stopped on the the
repeat mode is
deactivated.
. The playlist plays
User taps twice the repeat 1C Prayust pay
o . i} X until the end and then
27 Listen to a story button on the player . Pass
. repeat starting by the
screen. -
first song.
The audio keeps
. . laying. The user can
User is listenning to an playing. & "
c £ use the device's OS to
28 Listen to a story audio and locks the ‘ Pass
S pause, play, skip to
device screen. -
next or previous
audios in the playlist.
The audio keeps
- . laying. The user can
User is listenning to an | P 2708 % ' ’
. . = use the device's OS to
29 Listen to a story audio and changes to . Pass
) R pause, play, skip to
another app. .
next or previous
audios in the playlist.
User tap the "Record a .
" . The recorder screen is
30 Record a story story" on the initial . Pass
or displayed.
decision screen.
The recorder starts
recording. The timer
The user taps the record shows the current
31 Record a story button on the recorder recording duration. Pass
screen. The record button
becomes a stop
button.
The recorder stops
The user taps the stop recording. The timer
button on the recorder shows the final
32 Record a story screen after being recording duration. Pass
recording for a period of The record button
time. becomes a play
button.
The user taps the play The audio recorded is
13 Record a story button on Fhe rec:(?rder played. The play Pass
screen after having button becomes a stop
recording an audio. button.
The user taps the stop The recording
34 Record a story button on the rcf:ordcr playback stops. The Pass
screen after playing the | stop button becomes a
recorded audio. play button.
. The recording is
The user tap the refresh o Lo
button on the left of the erased. The timer is
35 Record a story set to 00:00. The play Pass

recorder screen after
having recorded an audio.

button becomes a
record button.

102

The user tap the done
button on the right of the

The screen to add the

36 Record a story title, author and select Pass
recorder screen after o er
. . a cover is displayed.
having recorded an audio.
The user inputs an author,
. putsan g) The screen to select
title and selects a cover . L .
37 Record a story . L the audio recipients is Pass
for the audio recorded and .
- displayed.
taps done.
The user does not input
one the author or the title :
38 Record a stor : Nothing happens. Pass
y for the audio recorded and & Happe
taps done.
The user inputs an author,
title but does not select a
39 Record a story . . Nothing he Pass
ecord a story cover for the audio othing happens ass
recorded and taps done.
The library screen is
displayed. The new
The user selects one or Py :
more contact as recipients audio can be seen in
40 Record a story SN prenis the yours tab. The Pass
for the audio recorded and .~
other recipients
taps send. : .
receive the audio
shared.
After signning up the user | The device's gallery is
41 Set up profile taps on the camera icon to | open and picture can Pass
select a profile picture. be chosen.
After signning up the user
does not select a profile
42 Set up profile picture from the galery Nothing happens. Pass
nor adds a name and taps
done.
The initial decision
After signning up the user | screen is displayed.
does not select a profile The standard profile
43 Set up profile picture from the galery | picture is attributed to Pass
but adds a name and taps | the user, which can be
done. seen in the drawer
menu.
The user profile
User taps on the user screen is displayed
44 Manage profile profile option in the with the user current Pass
drawer menu. profile picture and
name.
. User can change name
User taps on the edit and select ‘rnew
45 Manage profile buton on the profile P Pass
= o profile picture from
screen.
the galery.
The conversations
User taps on the chat screen is displayed
46 Chat option in the drawer with the list of all Pass

men.

user's 1-2-1 and group
chats.

103

User taps on a

The chat screen is
displayed with all the
messages of the user

47 Chat conversation on the . . Pass
T) on the right side and
conversation screen. . =
from other users on
the left side.
A screen to select a
contact is displayed.
User taps on the new The contact selected
43 Chat message button on the are registered in the Pass
conversations screen. app and also in the
user device's contacts
with the same email.
The chat screen is
displayed and the
User taps on a contact on selected contact
49 Chat AP ‘ - T Pass
the select contact screen. profile picture and
name can be seen on
the top.
User writes message in The message is sent.
the botton text field on the | Th ssage sh
50 Chat e botton text field on the e message show up Pass
chat screen as presses on the right hand side
send. of the screen.
User taps on the emoji A container for
51 Chat button the botton text selecting emojis is Pass
field on the chat screen. shows up.
A container for
User taps on the GIF selecting GIFs shows
52 Chat button the botton text up. The user can Pass
field on the chat screen. | search for GIF using
the search field.
The GIF is send. It is
53 Chat User telpf; on EI‘GIF on the displelyfzd on the right Pass
container displayed. hand side of the chat
screen.
" The screen to add a
User taps on the "create group profils picture
54 Create hat " option of th ! Pass
group cha group" option of the 2 name and select ass
drawer menu. AT
contacts 1s displayed.
User selects a picture
from the galery for the The group is created.
55 Create group chat group, adds a name, It can be seen in the Pass
selects users and clicks on | conversations screen.
done.
The initial decision
36 Authentication The logged in user closes | screen is displayed. Pass
persistence the app and reopens it. The user is still -
logged in.
The user is logged
. out. The welcome
The logged in user tap on screen is displaved
57 Log out the "log out" option of the | § Cisplay Pass

drawer menu.

with the animation
"send stories”, "send
love".

104

9.5 Evidence of automated tests’ results

Run: tests in auth_controller_test.dart o -
P @ B + Tests passed: 9 of 9 tests - 1sec 74T ms
K& ¥ o TectResults 1sec747ms (:\src\flutter\bin\flutter.bat --no-color test --machine --start-paused
test\auth\controller\auth_controller_test.dart
Testing started at 19:13 ...
= |
:_¢
o)
[
P eit ® Run ¥ Debug :=TODO O Problems @ DartAnalysis B3 Terminal = logeat /7 Profiler = Messages & App Inspection () Event Lo
Figure 56 — Snippet of the AuthController class tests results
Run: tests in auth_repository_test.dart o =
P v@ 121F = + o Tests passed: 9 -25ec 31 ms
& 7 ¥ TestResuts 2sec3ms C:\spc\flutter\bin\flutter.bat --no-color test --machine --start-paused
test\auth\repository\auth_repository_test.dart
Testing started at 19:16 ...
=
2 &
[]
Tests passed: 9
1 ge DBMGERY % Debue = TODO O Problems 4% DartAnahsis DN Terminal E Loaest 7 Profiler = Messanes & Aoo Insoection () EventLo
Figure 57 — Snippet of the AuthRepository class tests results
Run: tests in error_screen_test.dart -]
P v@ &k = > o Testspassed: 1 of 1 test - 788 ms
F ¥ W TestResults 788ms (C:\src\flutter\bin\flutter.bat --no-color test --machine --start-paused
test\common\error_screen_test.dart
Testing started at 19:17 ... =
u >
4
o 5
i
Tests passed: 1
PGt | BHun % Debug STODO O Problems @ DartAnalysis B3 Terminal = logeat 7 Profiler = Messages @ App Inspection () Event L

Figure 58 — Snippet of the ErrorScreen class tests results

105

Rur: tests in loader_screen_test.dart
P v@ I FE = " Tests passed: 1 B
F Test Results 85ms C:\src\Flutter\bin\flutter.bat --no-color test --machine --start-paused

test\common\loader_screen_test.dart
Testing started at 19:18 ...

Tests passed: 1

. .
PGt ®Run #Debug =STODD O Problems 4@ Dart Analysis B Terminal = Logeat o7 Profiler = Messages & App Inspection (QEv

Figure 59 — Snippet of the LoaderScreen class tests results

Run: tests in welcome_screen_test.dart

P v@ 12 F = » " Tests passed: 4 of %
& v TestResuits 2secS88ms C:\src\flutter\bin\flutter.bat --no-color test --machine --start-paused
test\landing\welcome_screen_test.dart

Testing started at 19:19

»
Tests passed: 4
1" Gt % Hun % Debug = TODO O Problems 4 Dart Analysis B4 Terminal = logeat /& Profiler = Messages % App Inspection
Figure 60 — Snippet of the WelcomeScreen class tests results
Run:z tests in audic_metadata_test.dart
P v@ = s o Tests passed: 3 ts - 56ms
& Test Results 6ms C:\src\flutter\bin\flutter.bat --no-color test --machine --start-paused
testimodels\audio_metadata_test.dart
Testing started at 19:22 ...
=
»
Tests passed: 3
P Git PPMMERY # Debug = TODO © Problems 4 DartAnalysis B Terminal = Logeat (7 Profiler = Messages # App Inspection

Figure 61 — Snippet of the AudioMetadata class tests results

[

[|

Q) Event Le

I dI

m h

Q) Event Lo

106

Run: tests in chat_conversation_test.dart
P v@ 12 1= T # o Tests passed: 2 ests - 62 m:
& v Test Results 8ms C:\src\Flutter\bin\flutter.bat --no-color test --machine --start-pavsed

test\models\chat_conversation_test.dart
Testing started at 19:23 ...

Tests passed: 2
PGt |BMun| ®Debug =TODO O Problems @ DartAnalysis B Terminal = logat % Profiler = Messages % App Inspection
Figure 62 — Snippet of the ChatConversation class tests results

Run: tests in group_test.dart

P vy @ B E = » o Tests passed: 2 of 2 tests — 50 ms

A W Test Results S0ms C:\src\Flutter\bin\flutter.bat --no-color test --machine --start-pavsed
test\models\group_test.dart
Testing started at 19:24 ...

-

»

Tests passed: 2

Gt B Run | # Debug

ODO @ Problems & Dart Analysis B Terminal = logeaat /7 Profiler = Messages 4 App Inspection

Figure 63 — Snippet of the Group class tests results

Run: tests in message_test.dart

@ B E » o Tests passed: 2 of 2 tests — 47 ms
&+ TestResults 4ims C:\src\flutter\bin\flutter.pat --no-color test --machine --start-paused
test\models\message_test.dart
Testing started at 19:25 ...
u
»
Tests passed: 2

& Wl

m |

Q) Event Lc

I

m

Q) Event Lc

PGt | B Hun @ Debug =TODO © Problems @ DartAnabsic O Terminal = logeat @i Profiler = Messages % Applnspection () Ev

Figure 64 — Snippet of the Message class tests results

Run: tests in user_model_test.dart
Pvi@ L 1E = o Tests passed: 2 of 2 tests — Tdms
& ¥ Test Results ms C:\src\flutter\bin\flutter.bat --no-color test --machine --start-paused

test\models\user_model_test.dart
Testing started at 19:26 ...

Tests passed: 2

Gt | BHun | # Debug

ODO @ Problems 4 Dart Analysis B Terminal = logeat /7 Profiler = Messages @ App Inspection
Figure 65 — Snippet of the UserModel class tests results

[F]|

m

() Event Le

107

PROJECT_REPORT_ANA_LUIZA_CASTRO

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

Instructor

/100

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

PAGE 18

PAGE 19

PAGE 20

PAGE 21

PAGE 22

PAGE 23

PAGE 24

PAGE 25

PAGE 26

PAGE 27

PAGE 28

PAGE 29

PAGE 30

PAGE 31

PAGE 32

PAGE 33

PAGE 34

PAGE 35

PAGE 36

PAGE 37

PAGE 38

PAGE 39

PAGE 40

PAGE 41

PAGE 42

PAGE 43

PAGE 44

PAGE 45

PAGE 46

PAGE 47

PAGE 48

PAGE 49

PAGE 50

PAGE 51

PAGE 52

PAGE 53

PAGE 54

PAGE 55

PAGE 56

PAGE 57

PAGE 58

PAGE 59

PAGE 60

PAGE 61

PAGE 62

PAGE 63

PAGE 64

PAGE 65

PAGE 66

PAGE 67

PAGE 68

PAGE 69

PAGE 70

PAGE 71

PAGE 72

PAGE 73

PAGE 74

PAGE 75

PAGE 76

PAGE 77

PAGE 78

PAGE 79

PAGE 80

PAGE 81

PAGE 82

PAGE 83

PAGE 84

PAGE 85

PAGE 86

PAGE 87

PAGE 88

PAGE 89

PAGE 90

PAGE 91

PAGE 92

PAGE 93

PAGE 94

PAGE 95

PAGE 96

PAGE 97

PAGE 98

PAGE 99

PAGE 100

PAGE 101

PAGE 102

PAGE 103

PAGE 104

PAGE 105

PAGE 106

PAGE 107

GRADING FORM: MSC PROJECT (21/22) ZW

ANA LUIZA SILVA DE CASTRO 72

SPECIFICATION (20)

Distinction: The specification and design of the system/software clearly
demonstrates how to meet the requirements, and all components fit
together in a coherent way. Merit: A good attempt has been made in the
specification and design of the system/software. Pass: Before starting
the implementation, a specification and design of the system/software is
laid out. Borderline Fail: Some attempt has been made in the
specification and design of the system/software but not in sufficient
detail or too much irrelevant information has been included. Fail: Very

little or no attempt has been made in the specification and design of the
system/software.

y‘ The specification and design are comprehensive 1 6
and fit together in a coherent way. | appreciate the
thought that went into the design especially the
accessibility considerations described on Page 30.

IMPLEMENTATION (30)

Distinction: The key stages of the implementation or research are clearly
explained. The implementation or research for a challenging problem is
carried out to a high standard. Merit: The implementation or research
for a challening problem has been partially successful or has been
carried out to a high standard for a less ambitious project. Merit: The
implementation or research for a challenging problem has been
partially successful or has been carriedout to a high standard for a less
ambitious project. Pass: The key stages of the implementation or
research are explained. The implementation or research is sound.
Borderline fail: Some attempt to explain the key stages of the
implementation or research. The implementation or research has been
only partially successful. Fail: Little or no attempt to explain the key
stages of the implementation or research. The implementation or
research only addressed simple aspects of the problem.

y‘ This is a relatively straightforward design that has 1 8
been implemented well.

TESTING (30)

Distinction: The solution demonstrates deep insight into the
problem/research question. Reflections on the contribution and its
limitations are fully justified. Key results are accurately and critically
analysed. Relevant conclusions are drawn. Merit: The report has a clear

and logical argument to support the contribution and its limitations. It
discusses how the software meets the requirements and is well
reinforced by evidence. Pass: The report attempts to provide a clear and
justified reflection upon the contribution and its limitations. It discusses
how the software meets the specified requirements. Borderline fail:
Some attempt at reflection upon the contribution and its limitations but
the argument may be difficult to identify or follow. Some attempt to
discuss how the software meets the specified requirements. Fail: Little or
no attempt at reflection upon the contribution and its limitations. Little
or no attempt to discuss how the software meets the specified
requirements.

y‘ The report describes a thorough testing procedure 25
and comments on its limitations.

PRESENTATION (20)

Distinction: The report is self-contained, providing background and
context. It is well-organised and demonstrates the concepts presented.
Complex issues are explained clearly. The solution is well-justified. The
report cites relevant resources using consistent style and is of
professional quality. Merit: Relevant background research and context
are presented. Material is generally well-organised and clearly
presented. The solution is justified. The report cites relevant resources
using an appropriate consistent referencing style. Pass: The report is
coherent in style and structure and includes citations. It communicates
the main project outcomes. Borderline fail: Some aspects of the material
may be poorly presented and badly-organised. Outcomes are not
clearly communicated. Referencing is limited or incomplete. Fail:
Material is poorly presented and badly-organised. The student’s
contribution is unclear. Referencing is limited or incomplete.

y‘ This is an unusual presentation for a report, 1 3
particularly organising material around sprints,

which | found to be rather engaging. The
references are not entirely consistent. | am not
clear what "closed" is meant to represent in Figure

1. The description of the implementation is far too
long at 35 pages.

